Determining post-treatment surveillance criteria for predicting the elimination of Schistosoma mansoni transmission

Author:

Toor JaspreetORCID,Truscott James E.,Werkman Marleen,Turner Hugo C.,Phillips Anna E.,King Charles H.,Medley Graham F.,Anderson Roy M.

Abstract

Abstract Background The World Health Organization (WHO) has set elimination (interruption of transmission) as an end goal for schistosomiasis. However, there is currently little guidance on the monitoring and evaluation strategy required once very low prevalence levels have been reached to determine whether elimination or resurgence of the disease will occur after stopping mass drug administration (MDA) treatment. Methods We employ a stochastic individual-based model of Schistosoma mansoni transmission and MDA impact to determine a prevalence threshold, i.e. prevalence of infection, which can be used to determine whether elimination or resurgence will occur after stopping treatment with a given probability. Simulations are run for treatment programmes with varying probabilities of achieving elimination and for settings where adults harbour low to high burdens of infection. Prevalence is measured based on using a single Kato-Katz on two samples per individual. We calculate positive predictive values (PPV) using PPV ≥ 0.9 as a reliable measure corresponding to ≥ 90% certainty of elimination. We analyse when post-treatment surveillance should be carried out to predict elimination. We also determine the number of individuals across a single community (of 500–1000 individuals) that should be sampled to predict elimination. Results We find that a prevalence threshold of 1% by single Kato-Katz on two samples per individual is optimal for predicting elimination at two years (or later) after the last round of MDA using a sample size of 200 individuals across the entire community (from all ages). This holds regardless of whether the adults have a low or high burden of infection relative to school-aged children. Conclusions Using a prevalence threshold of 0.5% is sufficient for surveillance six months after the last round of MDA. However, as such a low prevalence can be difficult to measure in the field using Kato-Katz, we recommend using 1% two years after the last round of MDA. Higher prevalence thresholds of 2% or 5% can be used but require waiting over four years for post-treatment surveillance. Although, for treatment programmes where elimination is highly likely, these higher thresholds could be used sooner. Additionally, switching to more sensitive diagnostic techniques, will allow for a higher prevalence threshold to be employed.

Funder

Bill & Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference31 articles.

1. WHO. Update on the global status of implementation of preventive chemotherapy (PC). Geneva: World Health Organization; 2019. https://www.who.int/neglected_diseases/preventive_chemotherapy/PC_Update.pdf .

2. World Health Assembly. Schistosomiasis and soil-transmitted helminth infections. WHA resolution 54.19. 2001.

3. WHO. Schistosomiasis: Progress report 2001–2011 and strategic plan 2012-2020. Geneva: World Health Organization; 2013.

4. Toor J, Alsallaq R, Truscott JE, Turner HC, Werkman M, Gurarie D, et al. Are we on our way to achieving the 2020 goals for schistosomiasis morbidity control using current World Health Organization guidelines? Clin Infect Dis. 2018;66(Suppl. 4):S245–52.

5. Toor J, Turner HC, Truscott JE, Werkman M, Phillips AE, Alsallaq R, et al. The design of schistosomiasis monitoring and evaluation programmes: the importance of collecting adult data to inform treatment strategies for Schistosoma mansoni. PLoS Negl Trop Dis. 2018;12:e0006717.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3