Molecular characterization of RNase III protein of Asaia sp. for developing a robust RNAi-based paratransgensis tool to affect the sexual life-cycle of Plasmodium or Anopheles fitness

Author:

Asgari Majid,Ilbeigikhamsehnejad Mahdokht,Rismani Elham,Dinparast Djadid Navid,Raz AbbasaliORCID

Abstract

Abstract Background According to scientific recommendations, paratransgenesis is one of the solutions for improving the effectiveness of the Global Malaria Eradication Programme. In paratransgenesis, symbiont microorganisms are used for distorting or blocking the parasite life-cycle, affecting the fitness and longevity of vectors or reducing the vectorial competence. It has been revealed recently that bacteria could be used as potent tools for double stranded RNA production and delivery to insects. Moreover, findings showed that RNase III mutant bacteria are more competent for this aim. Asaia spp. have been introduced as potent paratransgenesis candidates for combating malaria and, based on their specific features for this goal, could be considered as effective dsRNA production and delivery tools to Anopheles spp. Therefore, we decided to characterize the rnc gene and its related protein to provide the basic required information for creating an RNase III mutant Asaia bacterium. Methods Asaia bacteria were isolated from field-collected Anopheles stephensi mosquitoes. The rnc gene and its surrounding sequences were characterized by rapid amplification of genomic ends. RNase III recombinant protein was expressed in E. coli BL21 and biological activity of the purified recombinant protein was assayed. Furthermore, Asaia RNaseIII amino acid sequence was analyzed by in silico approaches such as homology modeling and docking to determine its structural properties. Results In this study, the structure of rnc gene and its related operon from Asaia sp. was determined. In addition, by performing superimposition and docking with specific substrate, the structural features of Asaia RNaseIII protein such as critical residues which are involved and essential for proper folding of active site, binding of magnesium ions and double stranded RNA molecule to protein and cleaving of dsRNA molecules, were determined. Conclusions In this study, the basic and essential data for creating an RNase III mutant Asaia sp. strain, which is the first step of developing an efficient RNAi-based paratransgenesis tool, were acquired. Asaia sp. have been found in different medically-important vectors and these data are potentially very helpful for researchers studying paratransgenesis and vector-borne diseases and are interested in applying the RNAi technology in the field.

Funder

Pasteur Institute of Iran

Iran National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference126 articles.

1. Hill CA, Kafatos FC, Stansfield SK, Collins FH. Arthropod-borne diseases: vector control in the genomics era. Nat Rev Microbiol. 2005;3:262–8.

2. Ramalho-Ortigão M, Coutinho-Abreu IV. Transgenesis, paratransgenesis and transmission blocking vaccines to prevent insect-borne diseases. In: Larramendy ML, editor. Integrated pest management and pest control: current and future tactics. Rijeca: InTech; 2012. p. 581–612.

3. Flores HA, O’Neill SL. Controlling vector-borne diseases by releasing modified mosquitoes. Nat Rev Microbiol. 2018;16:508–18.

4. WHO. World malaria report 2017. Geneva: World Health Organization; 2018.

5. Casares S, Brumeanu T-D, Richie TL. The RTS,S malaria vaccine. Vaccine. 2010;28:4880–94.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3