Abstract
Abstract
Background
The Aedes aegypti mosquito is the primary vector for several diseases. Its control requires a better understanding of the mosquitoes’ live cycle, including the spatial dynamics. Several models address this issue. However, they rely on many hard to measure parameters. This work presents a model describing the spatial population dynamics of Aedes aegypti mosquitoes using partial differential equations (PDEs) relying on a few parameters.
Methods
We show how to estimate model parameter values from the experimental data found in the literature using concepts from dynamical systems, genetic algorithm optimization and partial differential equations. We show that our model reproduces some analytical formulas relating the carrying capacity coefficient to experimentally measurable quantities as the maximum number of mobile female mosquitoes, the maximum number of eggs, or the maximum number of larvae. As an application of the presented methodology, we replicate one field experiment numerically and investigate the effect of different frequencies in the insecticide application in the urban environment.
Results
The numerical results suggest that the insecticide application has a limited impact on the mosquitoes population and that the optimal application frequency is close to one week.
Conclusions
Models based on partial differential equations provide an efficient tool for simulating mosquitoes’ spatial population dynamics. The reduced model can reproduce such dynamics on a sufficiently large scale.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference52 articles.
1. Paixão ES, Teixeira MG, Rodrigues LC. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health. 2018. https://doi.org/10.1136/bmjgh-2017-000530.
2. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, Bhatt S, Katzelnick L, Howes RE, Battle KE. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 2014;22(3):138–46. https://doi.org/10.1016/j.tim.2013.12.011.
3. World Health Organization. Global strategy for dengue prevention and control 2012–2020. Geneva: World Health Organization; 2012.
4. Organisation Mondiale de la Santé. World Health Organization: weekly epidemiological record. Weekly Epidemiological Record Relevé épidémiologique hebdomadaire. 2018;93(36):457–76.
5. PAHO: epidemiological update dengue, 7 February 2020. Technical report; 2020.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献