Identification of parameters and formulation of a statistical and machine learning model to identify Babesia canis infections in dogs using available ADVIA hematology analyzer data

Author:

Pijnacker Tera,Bartels Richard,van Leeuwen Martin,Teske Erik

Abstract

Abstract Background Canine babesiosis is an important tick-borne disease in endemic regions. One of the relevant subspecies in Europe is Babesia canis, and it can cause severe clinical signs such as hemolytic anemia. Apart from acute clinical symptoms dogs can also have a more chronic disease development or be asymptomatic carriers. Our objective was to identify readily available ADVIA hematology analyzer parameters suggestive of B. canis parasitemia in dogs and to formulate a predictive model. Methods A historical dataset of complete blood count data from an ADVIA hematology system with blood smear or PCR confirmed parasitemia cases was used to obtain a model by conventional statistics (CS) methods and machine learning (ML) using logistical regression and tree methods. Results Both methods identified that important parameters were platelet count, mean platelet volume and percentage large unstained cells. We were able to formulate a CS model and ML model to screen for Babesia parasitemia in dogs with a sensitivity of 84.6% (CS) and 100% (ML), a specificity of 97.7% (CS) and 95.7% (ML) and a positive likelihood ratio (LR+) of 36.78 (CS) and 23.2 (ML). Conclusions This study introduces two methods of screening for B. canis parasitemia on readily available data from ADVIA hematology systems. The algorithms can easily be introduced in laboratories that use these analyzers. When the algorithm marks a sample as ‘suggestive’ for Babesia parasitemia, the sample is approximately 37 times more likely to show Babesia merozoites on blood smear analysis. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3