Wild ungulate species differ in their contribution to the transmission of Ixodes ricinus-borne pathogens

Author:

Fabri Nannet D.,Sprong Hein,Hofmeester Tim R.,Heesterbeek Hans,Donnars Björn F.,Widemo Fredrik,Ecke Frauke,Cromsigt Joris P. G. M.

Abstract

Abstract Background Several ungulate species are feeding and propagation hosts for the tick Ixodes ricinus as well as hosts to a wide range of zoonotic pathogens. Here, we focus on Anaplasma phagocytophilum and Borrelia burgdorferi (s.l.), two important pathogens for which ungulates are amplifying and dilution hosts, respectively. Ungulate management is one of the main tools to mitigate human health risks associated with these tick-borne pathogens. Across Europe, different species of ungulates are expanding their ranges and increasing in numbers. It is currently unclear if and how the relative contribution to the life-cycle of I. ricinus and the transmission cycles of tick-borne pathogens differ among these species. In this study, we aimed to identify these relative contributions for five European ungulate species. Methods We quantified the tick load and collected ticks and spleen samples from hunted fallow deer (Dama dama, n = 131), moose (Alces alces, n = 15), red deer (Cervus elaphus, n = 61), roe deer (Capreolus capreolus, n = 30) and wild boar (Sus scrofa, n = 87) in south-central Sweden. We investigated the presence of tick-borne pathogens in ticks and spleen samples using real-time PCR. We determined if ungulate species differed in tick load (prevalence and intensity) and in infection prevalence in their tissue as well as in the ticks feeding on them. Results Wild boar hosted fewer adult female ticks than any of the deer species, indicating that deer are more important as propagation hosts. Among the deer species, moose had the lowest number of female ticks, while there was no difference among the other deer species. Given the low number of infected nymphs, the relative contribution of all ungulate species to the transmission of B. burgdorferi (s.l.) was low. Fallow deer, red deer and roe deer contributed more to the transmission of A. phagocytophilum than wild boar. Conclusions The ungulate species clearly differed in their role as a propagation host and in the transmission of B. burgdorferi and A. phagocytophilum. This study provides crucial information for ungulate management as a tool to mitigate zoonotic disease risk and argues for adapting management approaches to the local ungulate species composition and the pathogen(s) of concern. Graphic abstract

Funder

Future Animals, Nature and Health platform at the Swedish University of Agricultural Sciences

Naturvårdsverket

European Interreg North Sea Region program

Ministerie van Volksgezondheid, Welzijn en Sport

Dutch research council

Swedish University of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference58 articles.

1. Spitzer R. Trophic resource use and partitioning in multispecies ungulate communities. Swedish University of Agricultural Sciences, Umeå. 2019. https://pub.epsilon.slu.se/16431/1/spitzer_r_191114.pdf. Accessed 21 Jul 2020.

2. Deinet S, Ieronymidou C, McRae L, Burfield IJ, Foppen RP, Collen B, et al. Wildlife comeback in Europe: the recovery of selected mammal and bird species. In: Delibes-Mateos M, Diaz-Fernandez S, Ferreras P, Vinuela J, Arroyo B, editors, et al. Final report to rewilding Europe. London: ZSL, BirdLife International and the European Bird Census Council; 2013.

3. Apollonio M, Andersen R, Putman R. European ungulates and their management in the 21st century. Cambridge: Cambridge University Press; 2010.

4. Maclean IMD, Austin GE, Rehfisch MM, Blew J, Crowe O, Delany S, et al. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Glob Change Biol. 2008;14(11):2489–500.

5. Presley SJ, Cisneros LM, Klingbeil BT, Willig MR. Landscape ecology of mammals. J Mammal. 2019;100(3):1044–68.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3