Abstract
AbstractBackgroundVector-borne diseases are a major burden to public health. Controlling mosquitoes is considered the most effective way to prevent vector-borne disease transmission. Mosquito surveillance is a core component of integrated vector management, as surveillance programs are often the cornerstone for the development of mosquito control operations. Two traps are the most commonly used for the surveillance of adult mosquitoes: Centers for Disease Control and Prevention miniature light trap (CDC light trap) and BG-Sentinel trap (BioGents, Regensburg, Germany). However, despite the importance of the BG-Sentinel trap in surveillance programs in the United States, especially in the Southern states, its effectiveness in consistently and reliably collecting mosquitoes in rural and natural areas is still unknown. We hypothesized that BG-Sentinel and CDC light traps would be more attractive to specific mosquito species present in rural and natural areas. Therefore, our objective was to compare the relative abundance, species richness, and community composition of mosquitoes collected in natural and rural areas by BG-Sentinel and CDC light traps.MethodsMosquitoes were collected from October 2020 to March 2021 using BG-Sentinel and CDC light traps baited with dry ice, totaling 105 trap-nights.ResultsThe BG-Sentinel traps collected 195,115 mosquitoes comprising 23 species from eight genera, and the CDC light traps collected 188,594 mosquitoes comprising 23 species from eight genera. The results from the permutational multivariate analysis of variance (PERMANOVA) and generalized estimating equation model for repeated measures indicate the BG-Sentinel and CDC light traps had similar sampling power.ConclusionEven though BG-Sentinel traps had a slightly better performance, the difference was not statistically significant indicating that both traps are suitable to be used in mosquito surveillance in rural and natural areas.Graphical Abstract
Funder
Centers for Disease Control and Prevention
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference75 articles.
1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.
2. Gaythorpe KAM, Hamlet A, Jean K, Garkauskas Ramos D, Cibrelus L, Garske T, et al. The global burden of yellow fever. Elife. 2021;10:1–22.
3. Breman JG, Egan A, Keusch GT. The intolerable burden of malaria: a new look at the numbers. Am J Trop Med Hyg. 2001;64:iv–vii.
4. World Health Organization—WHO. Vector-borne diseases. https:// www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
5. Panamerican Health Organization—PAHO. Reported cases of dengue fever in The Americas, 2019. http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.htm
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献