A loop-mediated isothermal amplification assay for Schistosoma mansoni detection in Biomphalaria spp. from schistosomiasis-endemic areas in Minas Gerais, Brazil

Author:

Mesquita Silvia Gonçalves,Neves Floria Gabriela dos Santos,Scholte Ronaldo Guilherme Carvalho,Carvalho Omar dos Santos,Fonseca Cristina Toscano,Caldeira Roberta Lima

Abstract

Abstract Background Schistosomiasis a neglected tropical disease  endemic in Brazil. It is caused by the trematode Schistosoma mansoni, which is transmitted by snails of the genus Biomphalaria. Among measures used to control and eliminate schistosomiasis, accurate mapping and monitoring of snail breeding sites are recommended. Despite the limitations of parasitological methods, they are still used to identify infected snails. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cost-effective diagnostic method for the identification of infected snails. In the work reported here, we aimed to validate the use of LAMP for the detection of S. mansoni in snails of the genus Biomphalaria. Methods Snails were collected in five municipalities of the Mucuri Valley and Jequitinhonha Valley regions in the state of Minas Gerais, Brazil. Snails were pooled according to collection site and then squeezed for the detection of S. mansoni and other trematode larvae. Pooled snails were subjected to pepsin digestion and DNA extraction. Molecular assays were performed for species-specific identification and characterization of the samples. A previously described LAMP assay was adapted, evaluated, and validated using laboratory and field samples. Results Using the parasitological method described here, S. mansoni cercariae were detected in snails from two collection sites, and cercariae of the family Spirorchiidae were found in snails from one site. The snails were identified by polymerase chain reaction (PCR)–restriction fragment length polymorphism (RFLP). Biomphalaria glabrata, the main snail host of S. mansoni in Brazil, was detected in 72.2% of the collection sites. Biomphalaria kuhniana, which is resistant to S. mansoni infection, was found in the remaining sites. Multiplex, low stringency (LS), and conventional PCR allowed the detection of positive snails in four additional sites. Trematodes belonging to the families Strigeidae and Echinostomatidae were detected by multiplex PCR in two sites. The LAMP assay was effective in detecting the presence of S. mansoni infection in laboratory (7 days post-infection) and field samples with no cross-reactivity for other trematodes. When compared to LS and conventional PCR, LAMP showed 100% specificity, 85.7% sensitivity, and a κ index of 0.88. Conclusions Our findings suggest that LAMP is a good alternative method for the detection and monitoring of transmission foci of S. mansoni, as it was three times as effective as the parasitological examination used here for the detection of infection, and is more directly applicable in the field than other molecular techniques. Graphical abstract

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Conselho Nacional de Desenvolvimento Científico/Programa de Excelência em Pesquisa - Pesquisa e Ensaios Clínicos

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference66 articles.

1. World Health Organization. Schistosomiasis (bilharzia). https://www.who.int/health-topics/schistosomiasis#tab=tab_1 Accessed 8 Nov 2020.

2. Pan American Health Organization. Schistosomiasis. https://www.paho.org/en/topics/schistosomiasis Accessed 8 Nov 2020.

3. Carvalho OS, Mendonça CLF, Marcelino JMR, Passos LKJ, Fernandez MA, Leal RS, et al. Distribuição geográfica dos hospedeiros intermediários do Schistosoma mansoni nos estados do Paraná, Minas Gerais, Bahia, Pernambuco e Rio Grande do Norte, 2012–2014. Epidemiol Serv Saúde. 2018;27:e2017343.

4. Paraense WL. Distribuição dos Caramujos no Brasil. In: Reis FA, Faria I, Katz N, editors. Modernos conhecimentos sobre esquistossomose mansônica. Belo Horizonte, MG: Academia Mineira de Medicina; 1986. p. 117–28.

5. Barbosa CS. Métodos de diagnóstico malacológico. Mem Inst Oswaldo Cruz. 1992;87:311–3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3