Excretory/secretory products from Trichinella spiralis adult worms ameliorate myocardial infarction by inducing M2 macrophage polarization in a mouse model

Author:

Wu Lingqin,Yin Wenhui,Wen Jutai,Wang Shuying,Li Huihui,Wang Xiaoli,Zhang Weixiao,Duan Shuyao,Zhu Qiuyu,Gao Erhe,Wu Shili,Zhan Bin,Zhou Rui,Yang Xiaodi

Abstract

Abstract Background Ischemia-induced inflammatory response is the main pathological mechanism of myocardial infarction (MI)-caused heart tissue injury. It has been known that helminths and worm-derived proteins are capable of modulating host immune response to suppress excessive inflammation as a survival strategy. Excretory/secretory products from Trichinella spiralis adult worms (Ts-AES) have been shown to ameliorate inflammation-related diseases. In this study, Ts-AES were used to treat mice with MI to determine its therapeutic effect on reducing MI-induced heart inflammation and the immunological mechanism involved in the treatment. Methods The MI model was established by the ligation of the left anterior descending coronary artery, followed by the treatment of Ts-AES by intraperitoneal injection. The therapeutic effect of Ts-AES on MI was evaluated by measuring the heart/body weight ratio, cardiac systolic and diastolic functions, histopathological change in affected heart tissue and observing the 28-day survival rate. The effect of Ts-AES on mouse macrophage polarization was determined by stimulating mouse bone marrow macrophages in vitro with Ts-AES, and the macrophage phenotype was determined by flow cytometry. The protective effect of Ts-AES-regulated macrophage polarization on hypoxic cardiomyocytes was determined by in vitro co-culturing Ts-AES-induced mouse bone marrow macrophages with hypoxic cardiomyocytes and cardiomyocyte apoptosis determined by flow cytometry. Results We observed that treatment with Ts-AES significantly improved cardiac function and ventricular remodeling, reduced pathological damage and mortality in mice with MI, associated with decreased pro-inflammatory cytokine levels, increased regulatory cytokine expression and promoted macrophage polarization from M1 to M2 type in MI mice. Ts-AES-induced M2 macrophage polarization also reduced apoptosis of hypoxic cardiomyocytes in vitro. Conclusions Our results demonstrate that Ts-AES ameliorates MI in mice by promoting the polarization of macrophages toward the M2 type. Ts-AES is a potential pharmaceutical agent for the treatment of MI and other inflammation-related diseases. Graphical Abstract

Funder

the Postgraduate Scientific Research Innovation Program of the Anhui Higher Education Institutions

512 Talents Development Project of Bengbu Medical College

the Natural Science Foundation of Anhui Province

the Natural Science Foundation of Bengbu Medical College

the Key Research Platform Open Project of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology,General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3