Functional characterization of acyl-CoA binding protein in Neospora caninum

Author:

Zhou Bingxin,Fu Yong,Zhang Heng,Wang Xianmei,Jin Gaowei,Xu Jianhai,Liu Qun,Liu Jing

Abstract

Abstract Background Lipid metabolism is pivotal for the growth of apicomplexan parasites. Lipid synthesis requires bulk carbon skeleton acyl-CoAs, the transport of which depends on the acyl-CoA binding protein (ACBP). In Neospora caninum, the causative agent of neosporosis, the FASII pathway is required for growth and pathogenicity. However, little is known about the fatty acid transport mechanism in N. caninum. Methods We have identified a cytosolic acyl-CoA binding protein, with highly conserved amino acid residues and a typical acyl-CoA binding domain in N. caninum. The recombinant NcACBP protein was expressed to verify the binding activities of NcACBP in vitro, and the heterologous expression of NcACBP in Δacbp yeast in vivo. Lipid extraction from ΔNcACBP or the wild-type of N. caninum was analyzed by GC-MS or TLC. Furthermore, transcriptome analysis was performed to compare the gene expression in different strains. Results The NcACBP recombinant protein was able to specifically bind acyl-CoA esters in vitro. A yeast complementation assay showed that heterologous expression of NcACBP rescued the phenotypic defects in Δacbp yeast, indicating of the binding activity of NcACBP in vivo. The disruption of NcACBP did not perturb the parasite’s growth but enhanced its pathogenicity in mice. The lipidomic analysis showed that disruption of NcACBP caused no obvious changes in the overall abundance and turnover of fatty acids while knockout resulted in the accumulation of triacylglycerol. Transcriptional analysis of ACBP-deficient parasites revealed differentially expressed genes involved in a wide range of biological processes such as lipid metabolism, posttranslational modification, and membrane biogenesis. Conclusions Our study demonstrated that genetic ablation of NcACBP did not impair the survival and growth phenotype of N. caninum but enhanced its pathogenicity in mice. This deletion did not affect the overall fatty acid composition but modified the abundance of TAG. The loss of NcACBP resulted in global changes in the expression of multiple genes. This study provides a foundation for elucidating the molecular mechanism of lipid metabolism in N. caninum.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Key Basic Research Program (973 program) of China

Beijing Municipal Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3