Knockdown resistance (kdr) gene of Aedes aegypti in Malaysia with the discovery of a novel regional specific point mutation A1007G

Author:

Akhir Mas Azlin M.,Wajidi Mustafa F. F.,Lavoué Sébastien,Azzam Ghows,Jaafar Izhan Shahrin,Awang Besar Noor Aslinda Ummi,Ishak Intan H.ORCID

Abstract

Abstract Background Improved understanding of the molecular basis of insecticide resistance may yield new opportunities for control of relevant disease vectors. In this current study, we investigated the quantification responses for the phenotypic and genotypic resistance of Aedes aegypti populations from different states in Malaysia. Methods We tested the insecticide susceptibility status of adult Ae. aegypti from populations of three states, Penang, Selangor and Kelantan (Peninsular Malaysia), against 0.25% permethrin and 0.25% pirimiphos-methyl using the World Health Organisation (WHO) adult bioassay method. Permethrin-resistant and -susceptible samples were then genotyped for domains II and III in the voltage-gated sodium channel (vgsc) gene using allele-specific polymerase chain reaction (AS-PCR) for the presence of any diagnostic single-nucleotide mutations. To validate AS-PCR results and to identify any possible additional point mutations, these two domains were sequenced. Results The bioassays revealed that populations of Ae. aegypti from these three states were highly resistant towards 0.25% permethrin and 0.25% pirimiphos-methyl. Genotyping results showed that three knockdown (kdr) mutations (S989P, V1016G and F1534C) were associated with pyrethroid resistance within these populations. The presence of a novel mutation, the A1007G mutation, was also detected. Conclusions This study revealed the high resistance level of Malaysian populations of Ae. aegypti to currently used insecticides. The resistance could be due to the widespread presence of four kdr mutations in the field and this could potentially impact the vector control programmes in Malaysia and alternative solutions should be sought. Graphical Abstract

Funder

Universiti Sains Malaysia Short Term Grant

Ministry of Education-Kingdom of Saudi Arabi

Ministry of Higher Education Malaysia Fundamental Research Grant Scheme

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3