In vitro effects of tropisetron and granisetron against Echinococcus granulosus (s.s.) protoscoleces by involvement of calcineurin and calmodulin

Author:

Shiee Mohammad Reza,Kia Eshrat Beigom,Zahabiun Farzaneh,Naderi Mahmood,Motevaseli Elahe,Nekoeian Shahram,Fasihi Harandi Majid,Dehpour Ahmad Reza

Abstract

Abstract Background Cystic echinococcosis (CE) is a disease caused by the larval stage of Echinococcus granulosus sensu lato  (s.l.). The treatment of CE mainly relies on the use of benzimidazoles, which can commonly cause adverse side effects. Therefore, more efficient treatment options are needed. Drug repurposing is a useful approach for advancing drug development. We have evaluated the in vitro protoscolicidal effects of tropisetron and granisetron in E. granulosus sensu stricto (s.s.) and assessed the expression of the calcineurin (CaN) and calmodulin (CaM) genes, both of which have been linked to cellular signaling activities and thus are potentially promising targets for the development of drugs. Methods Protoscoleces (PSC) of E. granulosus (s.s.) (genotype G1) obtained from sheep hepatic hydatid cysts were exposed to tropisetron and granisetron at concentrations of 50, 150 and 250 µM for various periods of time up to 10 days. Cyclosporine A (CsA) and albendazole sulfoxide were used for comparison. Changes in the morphology of PSC were investigated by light microscopy and scanning electron microscopy. Gene expression was assessed using real-time PCR at the mRNA level for E. granulosus calcineurin subunit A (Eg-CaN-A), calcineurin subunit B (Eg-CaN-B) and calmodulin (Eg-CaM) after a 24-h exposure at 50 and 250 µM, respectively. Results At 150 and 250 µM, tropisetron had the highest protoscolicidal effect, whereas CsA was most effective at 50 µM. Granisetron, however, was less effective than tropisetron at all three concentrations. Examination of morphological alterations revealed that the rate at which PSC were killed increased with increasing rate of PSC evagination, as observed in PSC exposed to tropisetron. Gene expression analysis revealed that tropisetron at 50 μM significantly upregulated Eg-CaN-B and Eg-CaM expression while at 250 μM it significantly downregulated both Eg-CaN-B and Eg-CaM expressions; in comparison, granisetron decreased the expression of all three genes at both concentrations. Conclusions Tropisetron exhibited a higher efficacy than granisetron against E. granulosus (s.s.) PSC, which is probably due to the different mechanisms of action of the two drugs. The concentration-dependent effect of tropisetron on calcineurin gene expression might reflect its dual functions, which should stimulate future research into its mechanism of action and evaluation of its potential therapeutical effect in the treatment of CE. Graphical Abstract

Funder

Tehran University of Medical Sciences and Health Services

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3