Author:
Valencia-Marín Bryan Steven,Gandica Irene Duarte,Aguirre-Obando Oscar Alexander
Abstract
Abstract
Background
Mayaro virus (Togaviridae) is an endemic arbovirus of the Americas with epidemiological similarities with the agents of other more prominent diseases such as dengue (Flaviviridae), Zika (Flaviviridae), and chikungunya (Togaviridae). It is naturally transmitted in a sylvatic/rural cycle by Haemagogus spp., but, potentially, it could be incorporated and transmitted in an urban cycle by Aedes aegypti, a vector widely disseminated in the Americas.
Methods
The Mayaro arbovirus dynamics was simulated mathematically in the colombian population in the eight biogeographical provinces, bearing in mind the vector’s population movement between provinces through passive transport via truck cargo. The parameters involved in the virus epidemiological dynamics, as well as the vital rates of Ae. aegypti in each of the biogeographical provinces were obtained from the literature. These data were included in a meta-population model in differential equations, represented by a model structured by age for the dynamic population of Ae. aegypti combined with an epidemiological SEI/SEIR-type model. In addition, the model was incorporated with a term of migration to represent the connectivity between the biogeographical provinces.
Results
The vital rates and the development cycle of Ae. aegypti varied between provinces, having greater biological potential between 23 °C and 28 °C in provinces of Imerí, biogeographical Chocó, and Magdalena, with respect to the North-Andean Moorland (9.33–21.38 °C). Magdalena and Maracaibo had the highest flow of land cargo. The results of the simulations indicate that Magdalena, Imerí, and biogeographical Chocó would be the most affected regarding the number of cases of people infected by Mayaro virus over time.
Conclusions
The temperature in each of the provinces influences the local population dynamics of Ae. aegypti and passive migration via transport of land cargo plays an important role on how the Mayaro virus would be disseminated in the human population. Once this arbovirus begins an urban cycle, the most-affected departments would be Antioquia, Santander, Norte de Santander, Cesar (Provinces of Magdalena), and Valle del Cauca, and Chocó (biogeographical province of Chocó), which is why vector control programmes must aim their efforts at these departments and include some type of vector control to the transport of land cargo to avoid a future Mayaro epidemic.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference109 articles.
1. Serra M. Fiebre por virus Mayaro: una alerta necesaria. Rev Habanera Cien Médi. 2016;15:494–6.
2. Anderson C, Downs W, Wattley G, Ahin N, Reese A. Mayaro virus: a new human disease agent: II. Isolation from blood of patients in Trinidad. Am J Trop Med Hyg. 1957;6:1012–6.
3. Lednicky J, Rochars M, Elbadry M, Loeb J, Telisma T, Chavannes S, et al. Mayaro virus in child with acute febrile illness, Haiti, 2015. Emerg Infect Dis. 2016;22:2000–2.
4. Zúñiga I, Caro J. Virus Mayaro: una nueva amenaza para el continente Americano. Rev Latin Infectol Pediatr. 2017;30:12–4.
5. Torres J, Russell K, Vasques C, Barrera R, Tesh R, Salas R, et al. Family cluster of Mayaro fever, Venezuela. Emerg Infect Dis. 2004;10:1304–6.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献