Abstract
Abstract
Background
The ability of blood-feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito-transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.
Methods
In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female Ae. aegypti. Metagenomic analysis of the V3–V4 variable region of the microbial 16S RNA gene was used for identification of the microbial differences down to species level.
Results
We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis-infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larvae. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacterial genera and phyla between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacterial species when commonly identified bacteria were compared.
Conclusions
To the best of our knowledge, this is the first study to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of Ae. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference57 articles.
1. Bowman DD, Atkins CE. Heartworm biology, treatment, and control. Vet Clin North Am Small Anim Pract. 2009;39:1127–58.
2. Spence Beaulieu MR, Reiskind MH. Comparative vector efficiency of two prevalent mosquito species for dog heartworm in North Carolina. J Med Entomol. 2020;57:608–14.
3. Theis JH. Public health aspects of dirofilariasis in the United States. Vet Parasitol. 2005;133:157–80.
4. Bowman DD, Liu Y, McMahan CS, Nordone SK, Yabsley MJ, Lund RB. Forecasting United States heartworm Dirofilaria immitis prevalence in dogs. Parasit Vectors. 2016;9:540.
5. Evans CC, Moorhead AR, Storey BE, Wolstenholme AJ, Kaplan RM. Development of an in vitro bioassay for measuring susceptibility to macrocyclic lactone anthelmintics in Dirofilaria immitis. Int J Parasitol Drugs Drug Resist. 2013;3:102–8.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献