Author:
Romo Bechara Nayma,Wasserberg Gideon,Raymann Kasie
Abstract
Abstract
Background
Sand flies vector several human pathogens, including Leishmania species, which cause leishmaniases. A leishmaniasis vaccine does not yet exist, so the most common prevention strategies involve personal protection and insecticide spraying. However, insecticides can impact non-target organisms and are becoming less effective because of the evolution of resistance. An alternative control strategy is the attract-and-kill approach, where the vector is lured to a lethal trap, ideally located in oviposition sites that will attract gravid females. Oviposition traps containing attractive microbes have proven successful for the control of some mosquito populations but have not been developed for sand flies. Gravid female sand flies lay their eggs in decomposing organic matter on which the larvae feed and develop. Studies have demonstrated that gravid females are particularly attracted to larval conditioned (containing eggs and larvae) and aged rearing substrates. An isolate-based study has provided some evidence that bacteria play a role in the attraction of sand flies to conditioned substrates. However, the overall bacterial community structure of conditioned and aged substrates and how they change over time has not been investigated.
Methods
The goal of this study was to characterize the bacterial communities of rearing and oviposition substrates that have been shown to vary in attractiveness to gravid sand flies in previous behavioral studies. Using 16S rRNA amplicon sequencing we determined the bacterial composition in fresh, aged, and larval-conditioned substrates at four time points representing the main life-cycle stages of developing sand flies. We compared the diversity, presence, and abundance of taxa across substrate types and time points in order to identify how aging and larval-conditioning impact bacterial community structure.
Results
We found that the bacterial communities significantly change within and between substrates over time. We also identified bacteria that might be responsible for attraction to conditioned and aged substrates, which could be potential candidates for the development of attract-and-kill strategies for sand flies.
Conclusion
This study demonstrated that both aging and larval conditioning induce shifts in the bacterial communities of sand fly oviposition and rearing substrates, which may explain the previously observed preference of gravid female sand flies to substrates containing second/third-instar larvae (conditioned) and substrates aged the same amount of time without larvae (aged).
Graphical Abstract
Funder
Department of Biology, University of North Carolina
National Institute of Allergy and Infectious Diseases
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献