Molecular monitoring of insecticide resistance in major disease vectors in Armenia

Author:

Paronyan Lusine,Babayan Lilit,Vardanyan Haykuhi,Manucharyan Arsen,Papapostolou Kyriaki Maria,Balaska Sofia,Vontas John,Mavridis Konstantinos

Abstract

Abstract Background Armenia is considered particularly vulnerable to life-threatening vector-borne diseases (VBDs) including malaria, West Nile virus disease and leishmaniasis. However, information relevant for the control of the vectors of these diseases, such as their insecticide resistance profile, is scarce. The present study was conducted to provide the first evidence on insecticide resistance mechanisms circulating in major mosquito and sand fly populations in Armenia. Methods Sampling sites were targeted based mainly on previous historical records of VBD occurrences in humans and vertebrate hosts. Initially, molecular species identification on the collected vector samples was performed. Subsequently, molecular diagnostic assays [polymerase chain reaction (PCR), Sanger sequencing, PCR-restriction fragment length polymorphism (RFLP), quantitative PCR (qPCR)] were performed to profile for major insecticide resistance mechanisms, i.e. target site insensitivity in voltage-gated sodium channel (vgsc) associated with pyrethroid resistance, acetylcholinesterase (ace-1) target site mutations linked to organophosphate (OP) and carbamate (CRB) resistance, chitin synthase (chs-1) target site mutations associated with diflubenzuron (DFB) resistance and gene amplification of carboxylesterases (CCEs) associated with resistance to the OP temephos. Results Anopheles mosquitoes were principally represented by Anopheles sacharovi, a well-known malaria vector in Armenia, which showed no signs of resistance mechanisms. Contrarily, the knockdown resistance (kdr) mutations V1016G and L1014F/C in the vgsc gene were detected in the arboviral mosquito vectors Aedes albopictus and Culex pipiens, respectively. The kdr mutation L1014S was also detected in the sand fly, vectors of leishmaniasis, Phlebotomus papatasi and P. tobbi, whereas no mutations were found in the remaining collected sand fly species, P. sergenti, P. perfiliewi and P. caucasicus. Conclusions This is the first study to report on molecular mechanisms of insecticide resistance circulating in major mosquito and sand fly disease vectors in Armenia and highlights the need for the establishment of systematic resistance monitoring practices for the implementation of evidence-based control applications. Graphical Abstract

Funder

European Union’s Horizon 2020 Research and Innovation Programme

ECODEVELOPMENT S.A.

Fondation Santé

Publisher

Springer Science and Business Media LLC

Reference59 articles.

1. Paronyan L, Avetisyan L, Gevorgyan K, Tunyan A, Manukyan A, Grigoryan A, et al. National vector control needs assessment (VCNA) in Armenia. Yerevan: Ministry of Health of Armenia Report; 2021.

2. Paronyan L, Babayan L, Manucharyan A, Manukyan D, Vardanyan H, Melik-Andrasyan G, et al. The mosquitoes of Armenia: review of knowledge and results of a field survey with first report of Aedes albopictus. Parasite. 2020;27:42. https://doi.org/10.1051/parasite/2020039.

3. Davidyants VA, Kondrashin AV, Vanyan AV, Morozova LF, Turbabina NA, Stepanova EV, et al. Role of malaria partners in malaria elimination in Armenia. Malar J. 2019;18:178. https://doi.org/10.1186/s12936-019-2814-y.

4. Manukian DV, Oganesian AS, Shakhnazarian SA, Aleksanian IuT. Role of mosquitoes in the transmisson of arboviruses in Armenia. Med Parazitol (Mosk). 2006;2:38–9.

5. Manukian DV, Oganesian AS, Shakhnazarian SA, Aleksanian IuT. The species composition of mosquitoes and ticks in Armenia. Med Parazitol (Mosk). 2006;1:31–3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3