Evolution of tetraspanin antigens in the zoonotic Asian blood fluke Schistosoma japonicum

Author:

Parsons Daniel A. J.,Walker Anthony J.,Emery Aidan M.,Webster Joanne P.,Lawton Scott P.

Abstract

Abstract Background Despite successful control efforts in China over the past 60 years, zoonotic schistosomiasis caused by Schistosoma japonicum remains a threat with transmission ongoing and the risk of localised resurgences prompting calls for a novel integrated control strategy, with an anti-schistosome vaccine as a core element. Anti-schistosome vaccine development and immunisation attempts in non-human mammalian host species, intended to interrupt transmission, and utilising various antigen targets, have yielded mixed success, with some studies highlighting variation in schistosome antigen coding genes (ACGs) as possible confounders of vaccine efficacy. Thus, robust selection of target ACGs, including assessment of their genetic diversity and antigenic variability, is paramount. Tetraspanins (TSPs), a family of tegument-surface antigens in schistosomes, interact directly with the host’s immune system and are promising vaccine candidates. Here, for the first time to our knowledge, diversity in S. japonicum TSPs (SjTSPs) and the impact of diversifying selection and sequence variation on immunogenicity in these protiens were evaluated. Methods SjTSP sequences, representing parasite populations from seven provinces across China, were gathered by baiting published short-read NGS data and were analysed using in silico methods to measure sequence variation and selection pressures and predict the impact of selection on variation in antigen protein structure, function and antigenic propensity. Results Here, 27 SjTSPs were identified across three subfamilies, highlighting the diversity of TSPs in S. japonicum. Considerable variation was demonstrated for several SjTSPs between geographical regions/provinces, revealing that episodic, diversifying positive selection pressures promote amino acid variation/variability in the large extracellular loop (LEL) domain of certain SjTSPs. Accumulating polymorphisms in the LEL domain of SjTSP-2, -8 and -23 led to altered structural, functional and antibody binding characteristics, which are predicted to impact antibody recognition and possibly blunt the host’s ability to respond to infection. Such changes, therefore, appear to represent a mechanism utilised by S. japonicum to evade the host’s immune system. Conclusion Whilst the genetic and antigenic geographic variability observed amongst certain SjTSPs could present challenges to vaccine development, here we demonstrate conservation amongst SjTSP-1, -13 and -14, revealing their likely improved utility as efficacious vaccine candidates. Importantly, our data highlight that robust evaluation of vaccine target variability in natural parasite populations should be a prerequisite for anti-schistosome vaccine development. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3