A nanoparticle vaccine displaying the ookinete PSOP25 antigen elicits transmission-blocking antibody response against Plasmodium berghei

Author:

Yao Guixiang,Min Hui,Yu Xinxin,Liu Fei,Cui Liwang,Cao Yaming

Abstract

Abstract Background Safe and effective vaccines are crucial for the control and eventual elimination of malaria. Novel approaches to optimize and improve vaccine efficacy are urgently required. Nanoparticle-based delivery platforms are considered potent and powerful tools for vaccine development. Methods In this study, we developed a transmission-blocking vaccine against malaria by conjugating the ookinete surface antigen PSOP25 to the Acinetobacter phage coat protein AP205, forming virus-like particles (VLPs) using the SpyTag/SpyCatcher adaptor system. The combination of AP205-2*SpyTag with PSOP25-SpyCatcher resulted in the formation of AP205-PSOP25 complexes (VLP-PSOP25). The antibody titers and avidity of serum from each immunization group were assessed by ELISA. Western blot and IFA were performed to confirm the specific reactivity of the elicit antisera to the native PSOP25 in Plasmodium berghei ookinetes. Both in vitro and in vivo assays were conducted to evaluate the transmission-blocking activity of VLP-PSOP25 vaccine. Results Immunization of mice with VLP-PSOP25 could induced higher levels of high-affinity antibodies than the recombinant PSOP25 (rPSOP25) alone or mixtures of untagged AP205 and rPSOP25 but was comparable to rPSOP25 formulated with alum. Additionally, the VLP-PSOP25 vaccine enhanced Th1-type immune response with remarkably increased levels of IgG2a subclass. The antiserum generated by VLP-PSOP25 specifically recognizes the native PSOP25 antigen in P. berghei ookinetes. Importantly, antisera generated by inoculation with the VLP-PSOP25 could inhibit ookinete development in vitro and reduce the prevalence of infected mosquitoes or oocyst intensity in direct mosquito feeding assays. Conclusions Antisera elicited by immunization with the VLP-PSOP25 vaccine confer moderate transmission-reducing activity and transmission-blocking activity. Our results support the utilization of the AP205-SpyTag/SpyCatcher platform for next-generation TBVs development. Graphical abstract

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology,General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3