Author:
Feix Anna Sophia,Cruz-Bustos Teresa,Ruttkowski Bärbel,Joachim Anja
Abstract
Abstract
Background
The porcine coccidium Cystoisospora suis is characterized by a complex life-cycle during which asexual multiplication is followed by sexual development with two morphologically distinct cell types, the micro- and macrogametes. Genes related to the sexual stages and cell cycle progression were previously identified in related Apicomplexa. Dynein light chain type 1 and male gamete fusion factor HAP2 are restricted to microgametes. Tyrosine-rich proteins and oocyst wall proteins are a part of the oocyst wall. The Rad51/Dmc1-like protein and Nima-related protein kinases are associated with the cell cycle and fertilization process. Here, the sexual stages of C. suis were characterized in vitro morphologically and for temporal expression changes of the mentioned genes to gain insight into this poorly known phase of coccidian development.
Methods
Sexual stages of C. suis developing in vitro in porcine intestinal epithelial cells were examined by light and electron microscopy. The transcriptional levels of genes related to merozoite multiplication and sexual development were evaluated by quantitative real-time PCR at different time points of cultivation. Transcription levels were compared for parasites in culture supernatants at 6–9 days of cultivation (doc) and intracellular parasites at 6–15 doc.
Results
Sexual stage of C. suis was detected during 8–11 doc in vitro. Microgamonts (16.8 ± 0.9 µm) and macrogamonts (16.6 ± 1.1 µm) are very similar in shape and size. Microgametes had a round body (3.5 ± 0.5 µm) and two flagella (11.2 ± 0.5 µm). Macrogametes were spherical with a diameter of 12.1 ± 0.5 µm. Merozoite gene transcription peaked on 10 doc and then declined. Genes related to the sexual stages and cell cycle showed an upregulation with a peak on 13 doc, after which they declined.
Conclusions
The present study linked gene expression changes to the detailed morphological description of C. suis sexual development in vitro, including fertilization, meiosis and oocyst formation in this unique model for coccidian parasites. Following this process at the cellular and molecular level will elucidate details on potential bottlenecks of C. suis development (applicable for coccidian parasites in general) which could be exploited as a novel target for control.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference55 articles.
1. Martineau GP, Del Castillo J. Epidemiological, clinical and control investigations on field porcine coccidiosis: clinical, epidemiological and parasitological paradigms? Parasitol Res. 2000;86:834–7.
2. Stuart BP, Lindsay DS. Coccidiosis in swine. Vet Hum Toxicol. 1987;29:65–7.
3. Stuart BP, Lindsay DS, Ernst JV, Gosser HS. Isospora suis enteritis in piglets. Vet Pathol. 1980;17:84–93.
4. Joachim A, Shrestha A. Coccidiosis of pigs. In: Dubey JP, editor. Coccidiosis in livestock, companion animals and humans. Boca Raton: CRC Press; 2020. p. 125–45.
5. Lindsay DS, Stuart BP, Wheat BE, Ernst JV. Endogenous development of the swine coccidium, Isospora suis Biester 1934. J Parasitol. 1980;66:771–9.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献