Identification of linear epitopes in SjSP-13 of Schistosoma japonicum using a GST-peptide fusion protein microplate array

Author:

Ma Li,Zhao Wenrong,Hou Xunya,Liu Mengmeng,Li Yanna,Shen Li,Xu Xindong

Abstract

Abstract Background The identification and characterization of epitopes facilitate the discovery and development of new therapeutics, vaccines and diagnostics for infectious diseases. In this study, we developed a glutathione S-transferase (GST)-peptide fusion protein microplate array for the identification of linear B-cell epitopes and applied this novel method to the identification of linear B-cell epitopes of SjSP-13, an immunodiagnostic biomarker of schistosomiasis japonica. Methods SjSP-13 was divided into 17 overlapped peptides (p1-17), and the coding sequence of each peptide was obtained by annealing two complementary oligonucleotides. SjSP-13 peptides were expressed by fusion with an N-terminal GST tag and a C-terminal 6xHis tag. The GST-peptide-His fusion protein was specifically bound to the Immobilizer Glutathione MicroWell 96-well plates without purification. SjSP-13 peptides and core epitopes that could be recognized by sera from schistosomiasis patients were identified by ELISA and confirmed by Western blot analysis. The receiver operating characteristic (ROC) analysis was performed to determine the diagnostic validity of the identified peptide. Results Full-length GST-peptide-His fusion proteins were successfully expressed and specifically bound to the Immobilizer Glutathione MicroWell 96-well plates. Two adjacent peptides (p7 and p8) were found to be highly immunogenic in humans. The core epitope of p7 and p8 is an 11-aa peptide (80KCLDVTDNLPE90) and an 8-aa peptide (90EKIIQFAE97), respectively. The area under the ROC curve (AUC) value of the peptide which contains the two identified epitopes is 0.947 ± 0.019. The diagnostic sensitivity and specificity of the peptide is 76.7% (95% CI: 68.8–84.5%) and 100%, respectively. Conclusions 90EKIIQFAE97 and 80KCLDVTDNLPE90 are the two linear epitopes of SjSP-13 recognized by patient sera, and could be potential serological markers for schistosomiasis japonica.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3