The intracellular bacterium Rickettsia rickettsii exerts an inhibitory effect on the apoptosis of tick cells

Author:

Martins Larissa Almeida,Palmisano Giuseppe,Cortez Mauro,Kawahara Rebeca,de Freitas Balanco José Mario,Fujita André,Alonso Beatriz Iglesias,Barros-Battesti Darci Moraes,Braz Gloria Regina Cardoso,Tirloni Lucas,Esteves Eliane,Daffre Sirlei,Fogaça Andréa Cristina

Abstract

Abstract Background Rickettsia rickettsii is a tick-borne obligate intracellular bacterium that causes Rocky Mountain spotted fever, a life-threatening illness. To obtain an insight into the vector–pathogen interactions, we assessed the effects of infection with R. rickettsii on the proteome cells of the tick embryonic cell line BME26. Methods The proteome of BME26 cells was determined by label-free high-performance liquid chromatography coupled with tandem mass spectrometry analysis. Also evaluated were the effects of infection on the activity of caspase-3, assessed by the hydrolysis of a synthetic fluorogenic substrate in enzymatic assays, and on the exposition of phosphatidyserine, evaluated by live-cell fluorescence microscopy after labeling with annexin-V. Finally, the effects of activation or inhibition of caspase-3 activity on the growth of R. rickettsii in BME26 cells was determined. Results Tick proteins of different functional classes were modulated in a time-dependent manner by R. rickettsii infection. Regarding proteins involved in apoptosis, certain negative regulators were downregulated at the initial phase of the infection (6 h) but upregulated in the middle of the exponential phase of the bacterial growth (48 h). Microorganisms are known to be able to inhibit apoptosis of the host cell to ensure their survival and proliferation. We therefore evaluated the effects of infection on classic features of apoptotic cells and observed DNA fragmentation exclusively in noninfected cells. Moreover, both caspase-3 activity and phosphatidylserine exposition were lower in infected than in noninfected cells. Importantly, while the activation of caspase-3 exerted a detrimental effect on rickettsial proliferation, its inhibition increased bacterial growth. Conclusions Taken together, these results show that R. rickettsii modulates the proteome and exerts an inhibitory effect on apoptosis in tick cellsthat seems to be important to ensure cell colonization. Graphical Abstract

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Pro-Reitoria de Pesquisa, Universidade de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3