DNA-based quantification and counting of transmission stages provides different but complementary parasite load estimates: an example from rodent coccidia (Eimeria)

Author:

Jarquín-Díaz Víctor HugoORCID,Balard Alice,Ferreira Susana Carolina Martins,Mittné Vivian,Murata Julia Mari,Heitlinger Emanuel

Abstract

Abstract Background Counting parasite transmission stages in faeces is the classical measurement to quantify “parasite load”. DNA-based quantifications of parasite intensities from faecal samples are relatively novel and often validated against such counts. When microscopic and molecular quantifications do not correlate, it is unclear whether oocyst counts or DNA-based intensity better reflects biologically meaningful concepts. Here, we investigate this issue using the example of Eimeria ferrisi (Coccidia), an intracellular parasite of house mice (Mus musculus). Methods We performed an infection experiment of house mice with E. ferrisi, in which the intensity of infection correlates with increased health impact on the host, measured as temporary weight loss during infection. We recorded the number of parasite transmissive stages (oocysts) per gram of faeces (OPG) and, as a DNA-based measurement, the number of Eimeria genome copies per gram of faeces for 10 days post-infection (dpi). We assessed weight loss relative to the day of experimental infection as a proxy of host health and evaluated whether DNA or oocyst counts are better predictors of host health. Results Absolute quantification of Eimeria DNA and oocyst counts showed similar but slightly diverging temporal patterns during 10 dpi. We detected Eimeria DNA earlier than the first appearance of oocysts in faeces. Additionally, Eimeria OPGs within each dpi did not explain parasite DNA intensity. Early dpi were characterized by high DNA intensity with low oocyst counts, while late infections showed the opposite pattern. The intensity of Eimeria DNA was consistently a stronger predictor of either maximal weight loss (1 value per animal during the infection course) or weight loss on each day during the experiment when controlling for between-dpi and between-individual variance. Conclusions Eimeria ferrisi oocyst counts correlate weakly with parasite intensity assessed through DNA quantification. DNA is likely partially derived from life-cycle stages other than transmissive oocysts. DNA-based intensities predict health outcomes of infection for the host more robustly than counts of transmissive stages. We conclude that DNA-based quantifications should not necessarily require validation against counts of transmissive stages. Instead, DNA-based load estimates should be evaluated as complementary sources of information with potential specific biological relevance for each host-parasite system. Graphical Abstract

Funder

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

Humboldt-Universität zu Berlin

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3