Proteomic analysis of exosome-like vesicles from Fasciola gigantica adult worm provides support for new vaccine targets against fascioliasis

Author:

Sheng Zhao-An,Wu Cui-Lan,Wang Dong-Ying,Zhong Shu-Hong,Yang Xi,Rao Guo-Shun,Peng Hao,Feng Shi-Wen,Li Jun,Huang Wei-Yi,Luo Hong-Lin

Abstract

Abstract Background Extracellular vesicles (EVs) released by helminths play an important role in parasite-host communication. However, little is known about the characteristics and contents of the EVs of Fasciola gigantica, a parasitic flatworm that causes tropical fascioliasis. A better understanding of EVs released by F. gigantica will help elucidate the mechanism of F. gigantica-host interaction and facilitate the search for new vaccine candidates for the control and treatment of fascioliasis. Methods Two different populations of EVs (15k EVs and 100k EVs) were purified from adult F. gigantica culture media by ultracentrifugation. The morphology and size of the purified EVs were determined by transmission electron microscopy (TEM) and by the Zetasizer Nano ZSP high performance particle characterization system. With the aim of identifying diagnostic markers or potential vaccine candidates, proteins within the isolated 100k EVs were analyzed using mass spectrometry-based proteomics (LC–MS/MS). Mice were then vaccinated with excretory/secretory products (ESPs; depleted of EVs), 15k EVs, 100k EVs and recombinant F. gigantica heat shock protein 70 (rFg-HSP70) combined with alum adjuvant followed by challenge infection with F. gigantica metacercariae. Fluke recovery and antibody levels were used as measures of vaccine protection. Results TEM analysis and nanoparticle tracking analysis indicated the successful isolation of two subpopulations of EVs (15k EVs and 100k EVs) from adult F. gigantica culture supernatants using differential centrifugation. A total of 755 proteins were identified in the 100k EVs. Exosome biogenesis or vesicle trafficking proteins, ESCRT (endosomal sorting complex required for transport) pathway proteins and exosome markers, heat shock proteins and 14-3-3 proteins were identified in the 100k EVs. These results indicate that the isolated 100k EVs were exosome-like vesicles. The functions of the identified proteins may be associated with immune regulation, immune evasion and virulence. Mice immunized with F. gigantica ESPs, 15k EVs, 100k EVs and rFg-HSP70 exhibited a reduction in fluke burden of 67.90%, 60.38%, 37.73% and 56.6%, respectively, compared with the adjuvant control group. The vaccination of mice with F. gigantica 100k EVs, 15k EVs, ESP and rFg-HSP70 induced significant production of specific immunoglobulins in sera, namely IgG, IgG1 and IgG2a. Conclusion The results of this study suggest that proteins within the exosome-like vesicles of F. gigantica have immunomodulatory, immune evasion and virulence functions. This knowledge may lead to new strategies for immunotherapy, vaccination and the diagnosis of fascioliasis. Graphical Abstract

Funder

Lin He’s Academician Workstation of New Medicine and Clinical Translation in Jining Medical University

Lin He’s Academician Workstation of New Medicine and Clinical Translation in Jining Medical Universit

Undergraduate Training Program for Innovation and Entrepreneurship of Jining Medical University

Guangxi basic scientific research project

Guangxi agricultural science and technology project

Guangxi Key Research and Development Program

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3