Author:
Wang Jing,Yu Shasha,Wang Luhan,Liu Tingting,Yang Xuesen,Hu Xiaobing,Wang Ying
Abstract
Abstract
Background
Mosquito-borne diseases threaten human health, but mosquito control faces various challenges, such as resistance to chemical insecticides. Thus, there is an urgent need for more effective and environment-friendly control agents. Capsaicin can downregulate the mTOR signaling pathway of tumor cells. The TOR signaling pathway can mediate the expression of vitellogenin (Vg) to regulate the fecundity of insects. Whether capsaicin has the potential to inhibit fecundity of mosquitoes by regulating TOR pathway and Vg expression is currently unclear.
Methods
Anopheles stephensi were fed with blood of mice administered capsaicin by gavage or sugar containing capsaicin followed by a blood feeding with normal mice. Then, the engorged female mosquitoes were tubed individually and underwent oviposition. The eggs and individuals in the subsequent development stages, including larvae, pupae, and emerging adults, were counted and compared between the capsaicin treatment and control groups. Additionally, total RNA and protein were extracted from the engorged mosquitoes at 24 h post blood feeding. Real-time PCR and western blot were performed to detect the transcriptional level and protein expression of the key fecundity-related molecules of mosquitoes. Finally, TOR signaling pathway was inhibited via rapamycin treatment, and changes in fecundity and the key molecule transcription and protein expression levels were examined to verify the role of TOR signaling pathway in the effect of capsaicin on mosquito fecundity.
Results
The laid and total eggs (laid eggs plus retained eggs) of An. stephensi were significantly reduced by feeding on the blood of capsaicin-treated mice (P < 0.01) or capsaicin-containing sugar (P < 0.01) compared with those in the control group. Moreover, the transcription and protein expression or phosphorylation levels of fecundity-related molecules, such as Akt, TOR, S6K, and Vg, were significantly decreased by capsaicin treatment. However, the effects disappeared between control group and CAP group after the TOR signaling pathway was inhibited by rapamycin.
Conclusions
Capsaicin can decrease the fecundity of An. stephensi by inhibiting the TOR signaling pathway. These data can help us to not only understand the effect of capsaicin on the reproductive ability of An. stephensi and its underlying mechanism, but also develop new efficient, safe, and pollution-free mosquito vector control agents.
Graphical Abstract
Funder
the Graduate Scientific Research Innovation Project of Chongqing China
National Natural Science Foundation of China
the Scientific and Technological Innovation Capacity Enhancement Special Project of Army Medical University
Military Biosafety Project
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference53 articles.
1. The Lancet Global Health. Vector control: time for a planetary health approach. Lancet Glob Health. 2017;5:e556.
2. Abdellahoum Z, Nebbak A, Lafri I, Kaced A, Bouhenna MM, Bachari K, et al. Identification of Algerian field-caught mosquito vectors by MALDI-TOF MS. Vet Parasitol Reg Stud Reports. 2022;31:100735.
3. WHO. World malaria report 2021. Geneva: World Health Organization; 2021.
4. Ishtiaq F, Swain S, Kumar SS. Anopheles stephensi (Asian Malaria Mosquito). Trends Parasitol. 2021;37:571–2.
5. McCarty MF, DiNicolantonio JJ, O’Keefe JH. Capsaicin may have important potential for promoting vascular and metabolic health. Open Heart. 2015;2:e000262.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献