The ecdysteroid receptor regulates salivary gland degeneration through apoptosis in Rhipicephalus haemaphysaloides

Author:

Lu Xiaojuan,Zhang Zhipeng,Yuan Dongqi,Zhou Yongzhi,Cao Jie,Zhang Houshuang,da Silva Vaz Itabajara,Zhou JinlinORCID

Abstract

Abstract Background It is well established that ecdysteroid hormones play an important role in arthropod development and reproduction, mediated by ecdysteroid receptors. Ticks are obligate hematophagous arthropods and vectors of pathogens. The salivary gland plays an essential role in tick growth and reproduction and in the transmission of pathogens to vertebrate hosts. During tick development, the salivary gland undergoes degeneration triggered by ecdysteroid hormones and activated by apoptosis. However, it is unknown how the ecdysteroid receptor and apoptosis regulate salivary gland degeneration. Here, we report the functional ecdysteroid receptor (a heterodimer of the ecdysone receptor [EcR] and ultraspiracle [USP]) isolated from the salivary gland of the tick Rhipicephalus haemaphysaloides and explore the molecular mechanism of ecdysteroid receptor regulation of salivary gland degeneration. Methods The full length of RhEcR and RhUSP open reading frames (ORFs) was obtained from the transcriptome. The RhEcR and RhUSP proteins were expressed in a bacterial heterologous system, Escherichia coli. Polyclonal antibodies were produced against synthetic peptides and were able to recognize recombinant and native proteins. Quantitative real-time PCR and western blot were used to detect the distribution of RhEcR, RhUSP, and RhCaspases in the R. haemaphysaloides organs. A proteomics approach was used to analyze the expression profiles of the ecdysteroid receptors, RhCaspases, and other proteins. To analyze the function of the ecdysteroid receptor, RNA interference (RNAi) was used to silence the genes in adult female ticks. Finally, the interaction of RhEcR and RhUSP was identified by heterologous co-expression assays in HEK293T cells. Results We identified the functional ecdysone receptor (RhEcR/RhUSP) of 20-hydroxyecdysone from the salivary gland of the tick R. haemaphysaloides. The RhEcR and RhUSP genes have three and two isoforms, respectively, and belong to a nuclear receptor family but with variable N-terminal A/B domains. The RhEcR gene silencing inhibited blood-feeding, blocked engorgement, and restrained salivary gland degeneration, showing the biological role of the RhEcR gene in ticks. In the ecdysteroid signaling pathway, RhEcR silencing inhibited salivary gland degeneration by suppressing caspase-dependent apoptosis. The heterologous expression in mammalian HEK293T cells showed that RhEcR1 interacts with RhUSP1 and induces caspase-dependent apoptosis. Conclusions These data show that RhEcR has an essential role in tick physiology and represents a putative target for the control of ticks and tick-borne diseases. Graphical Abstract

Funder

Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3