Abstract
Abstract
Background
The exotic invasive tiger mosquito, Aedes albopictus, appeared in southern Switzerland in 2003. The spread of the mosquito has been surveyed constantly since then, and an integrated vector management (IVM) has been implemented to control its numbers. The control measures focus on the aquatic phase of the mosquito with removal of breeding sites and applications of larvicides in public areas whereas private areas are reached through extensive public information campaigns. Here, we evaluated the efficacy of the IVM.
Methods
Since all the municipalities with Ae. albopictus in southern Switzerland are currently implementing the IVM, Italian municipalities just across the Swiss-Italian border, where Ae. albopictus is present but no coordinated intervention programme is in place, served as control. Ovitraps and adult female traps were used to measure mosquito abundance in 2019. Generalised mixed-effects models were used to model the numbers of Ae. albopictus eggs and adult females collected. These numbers of Ae. albopictus eggs were compared to the numbers of eggs collected in 2012 and 2013 in a previous assessment of the IVM, using a hurdle model.
Results
Mean numbers of Ae. albopictus eggs and adult females in 2019 were consistently higher in the municipalities not following an IVM programme. In these municipalities, there were about four times (3.8) more eggs than in the municipalities implementing an IVM programme. Also, the numbers of eggs and adult females increased steadily from the beginning of the Ae. albopictus reproductive season, reaching a peak in August. In contrast, the increase in numbers of Ae. albopictus was much more contained in the municipalities implementing an IVM programme, without reaching an evident peak. Comparison with data from 2012 and 2013 indicates that the gap between intervention and non-intervention areas may have almost doubled in the past 6 years.
Conclusions
The results of the survey strongly support the efficacy of the IVM programme implemented in southern Switzerland compared to municipalities without defined control measures. With the constant implementation of an IVM, it appears possible to contain the numbers of Ae. albopictus at a manageable level, reducing the nuisance for the human population and the risk of arbovirus epidemics.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference36 articles.
1. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11:1177–85.
2. Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12:435–47.
3. Knudsen AB, Romi R, Majori G. Occurrence and spread in Italy of Aedes albopictus, with implications for its introduction into other parts of Europe. J Am Mosq Control Assoc. 1996;12:177–83.
4. Wymann MN, Flacio E, Radczuweit S, Patocchi N, Lüthy P. Asian tiger mosquito (Aedes albopictus)—a threat for Switzerland? Euro Surveill. 2008;13:8058.
5. Flacio E, Engeler L, Tonolla M, Lüthy P, Patocchi N. Strategies of a thirteen-year surveillance programme on Aedes albopictus (Stegomyia albopicta) in southern Switzerland. Parasit Vectors. 2015;8:208.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献