Susceptibility to insecticides and resistance mechanisms in three populations of Aedes aegypti from Peru

Author:

Pinto Jesus,Palomino Miriam,Mendoza-Uribe Leonardo,Sinti Carmen,Liebman Kelly A.,Lenhart AudreyORCID

Abstract

Abstract Background Epidemics of dengue, chikungunya and Zika are a growing threat to areas where Aedes aegypti are present. The efficacy of chemical control of Ae. aegypti is threatened by the increasing frequency of insecticide resistance. The objective of this study was to determine the susceptibility status as well as the biochemical and molecular mechanisms underlying insecticide resistance in three populations of Ae. aegypti in high risk areas of dengue, chikungunya, and Zika in Peru. Methods Bioassays were conducted on adult Ae. aegypti to evaluate their susceptibility to insecticides used currently or historically for mosquito control in Peru, including six pyrethroids, three organophosphates and one organochlorine, in populations of Ae. aegypti from the districts of Chosica (Department of Lima), Punchana (Department of Loreto) and Piura (Department of Piura). Resistance mechanisms were determined by biochemical assays to assess activity levels of key detoxification enzyme groups (nonspecific esterases, multi-function oxidases, glutathione S-transferases and insensitive acetylcholinesterase). Real-time PCR assays were used to detect two kdr mutations (V1016I and F1534C) on the voltage-gated sodium channel gene. Results Resistance to DDT was detected in all three populations, and resistance to pyrethroids was detected in all populations except the population from Chosica, which still exhibited susceptibility to deltamethrin. Resistance to organophosphates was also detected, with the exception of populations from Punchana and Piura, which still demonstrated susceptibility to malathion. In general, no increase or alteration of activity of any enzyme group was detected. Both 1016I and 1534C alleles were detected in Punchana and Piura, while only the 1534C allele was detected in Chosica. Conclusions The results suggest that resistance to multiple classes of insecticides exist in areas important to Ae. aegypti-borne disease transmission in Peru. The F1534C mutation was present in all 3 populations and the V1016I mutation was present in 2 populations. To our knowledge, this is the first report of the presence of 1016I and 1534C in Ae. aegypti in Peru. The absence of highly elevated enzymatic activity suggests that target site resistance is a key mechanism underlying insecticide resistance in these populations, although further research is needed to fully understand the role of metabolic resistance mechanisms in these populations.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3