Genome-wide survey of cytochrome P450 genes in the salmon louse Lepeophtheirus salmonis (Krøyer, 1837)

Author:

Humble Joseph L.,Carmona-Antoñanzas Greta,McNair Carol M.,Nelson David R.,Bassett David I.,Egholm Ingibjørg,Bron James E.,Bekaert Michaël,Sturm ArminORCID

Abstract

Abstract Background The salmon louse (Lepeophtheirus salmonis) infests farmed and wild salmonid fishes, causing considerable economic damage to the salmon farming industry. Infestations of farmed salmon are controlled using a combination of non-medicinal approaches and veterinary drug treatments. While L. salmonis has developed resistance to most available salmon delousing agents, relatively little is known about the molecular mechanisms involved. Members of the cytochrome P450 (CYP) superfamily are typically monooxygenases, some of which are involved in the biosynthesis and metabolism of endogenous compounds, while others have central roles in the detoxification of xenobiotics. In terrestrial arthropods, insecticide resistance can be based on the enhanced expression of CYPs. The reported research aimed to characterise the CYP superfamily in L. salmonis and assess its potential roles in drug resistance. Methods Lepeophtheirus salmonis CYPs were identified by homology searches of the genome and transcriptome of the parasite. CYP transcript abundance in drug susceptible and multi-resistant L. salmonis was assessed by quantitative reverse transcription PCR, taking into account both constitutive expression and expression in parasites exposed to sublethal levels of salmon delousing agents, ecdysteroids and environmental chemicals. Results The above strategy led to the identification of 25 CYP genes/pseudogenes in L. salmonis, making its CYP superfamily the most compact characterised for any arthropod to date. Lepeophtheirus salmonis possesses homologues of a number of arthropod CYP genes with roles in ecdysteroid metabolism, such as the fruit fly genes disembodied, shadow, shade, spook and Cyp18a1. CYP transcript expression did not differ between one drug susceptible and one multi-resistant strain of L. salmonis. Exposure of L. salmonis to emamectin benzoate or deltamethrin caused the transcriptional upregulation of certain CYPs. In contrast, neither ecdysteroid nor benzo[a]pyrene exposure affected CYP transcription significantly. Conclusions The parasite L. salmonis is demonstrated to possess the most compact CYP superfamily characterised for any arthropod to date. The complement of CYP genes in L. salmonis includes conserved CYP genes involved in ecdysteroid biosynthesis and metabolism, as well as drug-inducible CYP genes. The present study does not provide evidence for a role of CYP genes in the decreased susceptibility of the multiresistant parasite strain studied.

Funder

Biotechnology and Biological Sciences Research Council

Scottish Salmon Producers' Organisation

Scottish Funding Council

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3