Spatial heterogeneity of knockdown resistance mutations in the dengue vector Aedes albopictus in Guangzhou, China

Author:

Zheng Xueli,Zheng Zihao,Wu Shanshan,Wei Yong,Luo Lei,Zhong Daibin,Zhou Guofa

Abstract

Abstract Background The city of Guangzhou has been the epicenter of dengue fever in China since the 1990s, with Aedesalbopictus being the primary vector. The main method used to control vectors and prevent dengue fever has been the application of chemical insecticides; however, this control strategy has resulted in the development of resistance to these insecticides in mosquitoes. Here we report our investigation of the patterns of knockdown resistance (kdr) mutations in 15 field populations of Ae.albopictus collected from 11 districts in Guangzhou. Results Four mutant alleles (V1016G, F1534S, F1534C, F1534L) were detected in domain II and III of the voltage-gated sodium channel (VGSC) gene. Various allele frequencies of kdr mutations were observed (3.1–25.9% for V1016G, 22.6–85.5% for F1534S, 0–29.0% for F1534L, 0.6–54.2% for F1534C). Seven kdr haplotypes (VF, VS, VL, VC, GF, GC, GS) were identified; the highest frequency of haplotypes was found for the single mutant haplotype VS (50.8%), followed by the wild-type VF haplotype (21.7%) and the single mutant haplotype VC (11.9%). Of the three double mutant haplotypes, GF was the most frequent (8.8%), followed by GC (1.2%) and GS (0.8%). Aedesalbopictus showed spatial heterogeneity in deltamethrin resistance in populations collected in Guangzhou. We also observed significant differences in haplotype frequency. The frequency of the VC haplotype was significantly higher in high-risk dengue areas than in low-risk ones. Conclusions The kdr allele V1016G was discovered for the first time in Guangzhou. Genetic isolation in mosquito populations and long-term insecticide selection seem to be responsible for the persistent, patchy distribution of kdr mutant alleles. The small-scale spatial heterogeneity in the distribution and frequency of kdr mutations may have important implications for vector control operations and insecticide resistance management strategies. Graphical Abstract

Funder

the National Natural Science Foundation of China

Guangzhou Science, Technology and Innovation Commission

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3