Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study

Author:

Gong Yanfeng,Tong Yixin,Jiang Honglin,Xu Ning,Yin Jiangfan,Wang Jiamin,Huang Junhui,Chen Yue,Jiang Qingwu,Li Shizhu,Zhou Yibiao

Abstract

Abstract Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract

Funder

national natural science foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology,General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3