The role of oxygen depletion and subsequent radioprotective effects during irradiation of mosquito pupae in water

Author:

Yamada Hanano,Maiga Hamidou,Bimbile-Somda Nanwintoum Severin,Carvalho Danilo O.,Mamai Wadaka,Kraupa Carina,Parker Andrew G.,Abrahim Aiman,Weltin Georg,Wallner Thomas,Schetelig Marc F.,Caceres Carlos,Bouyer Jeremy

Abstract

Abstract Background Radiation induced sterility is the basis of the Sterile Insect Technique, by which a target insect pest population is suppressed by releasing artificially reared sterile males of the pest species in overflooding numbers over a target site. In order for the sterile males to be of high biological quality, effective standard irradiation protocols are required. Following studies investigating the effects of mosquito pupae irradiation in water versus in air, there is a need to investigate the oxy-regulatory behavior of mosquito pupae in water to better understand the consequences of irradiation in hypoxic versus normoxic conditions. Methods Pupae of Aedes aegypti, Ae. albopictus, and Anopheles arabiensis were submerged in water inside air-tight 2 ml glass vials at a density of 100 pupae/ml and the dissolved oxygen (DO) levels in the water were measured and plotted over time. In addition, male pupae of Ae. aegypti (aged 40–44 h), Ae. albopictus (aged 40–44 h) and An. arabiensis (aged 20–24 h) were irradiated in a gammacell220 at increasing doses in either hypoxic (water with < 0.5% O2 content) or normoxic (in air) conditions. The males were then mated to virgin females and resulting eggs were checked for induced sterility. Results All three species depleted the water of DO to levels under 0.5% within 30 minutes, with An. arabiensis consuming oxygen the fastest at under 10 minutes. Following irradiation, the protective effect of hypoxia was observed across species and doses (P < 0.0001), increasing at higher doses. This effect was most pronounced in An. arabiensis. Conclusions The consumption of dissolved oxygen by pupae submerged in water was significantly different between species, indicating that their oxy-regulatory capacity seems to have possibly evolved according to their preferred breeding site characteristics. This needs to be considered when sterilizing male mosquitoes at pupal stage in water. Depending on species, their DO consumption rates and their density, irradiation doses needed to achieve full sterility may vary significantly. Further assessments are required to ascertain optimal conditions in terms of ambient atmosphere during pupal irradiation to produce competitive sterile males, and temperature and density dependent effects are expected.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference67 articles.

1. Dyck VA, Hendrichs JP, Robinson AS. The sterile insect technique: principles and practice in area-wide integrated pest management. Dordrecht: Springer; 2005.

2. Dame DA, Lowe RE, Williamson DL. Assessment of released sterile Anopheles albimanus and Glossina morsitans morsitans. In: Pal R, Kitzmiller JB, Kanda T, editors. Amsterdam: Elsevier Biomedical Press; 1981. pp. 231–48.

3. Lofgren CS, Dame DA, Breeland SG, Weidhaas DE, Jeffery GM, Kaiser R, et al. Release of chemosterilized males for the control of Anopheles albimanus in El Salvador III. Field methods and population control. Am J Trop Med Hyg. 1974;23:288–97.

4. Asman SM, McDonald PT, Prout T. Field studies of genetic control systems for mosquitoes. Annu Rev Entomol. 1981;26:289–318.

5. Asman SM, Nelson RL, McDonald PT, Milby MM, Reeves WC, White KD, et al. Pilot release of a sex-linked multiple translocation into a Culex tarsalis field population in Kern County, California. Mosq News. 1979;39:248–58.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3