Abstract
Abstract
Background
Current data about Pseudaliidae show contrasting patterns of host specificity between congeneric species. We investigated how both contact and compatibility between hosts and parasites contributed to the patterns of lungworm infection observed in a community of five species of cetaceans in the western Mediterranean.
Methods
The lungs of 119 striped dolphins Stenella coeruleoalba, 18 bottlenose dolphins Tursiops truncatus, 7 Risso’s dolphins Grampus griseus, 7 long-finned pilot whales Globicephala melas, and 6 common dolphins Delphinus delphis were analysed for lungworms. Parasites were identified by morphology and analysis of ITS2 sequences using both maximum likelihood and Bayesian inference methods. Body length was used as a proxy for lungworm species fitness in different hosts and compared with Kruskal-Wallis tests. Infection parameters were compared between cetacean species using Fisher’s exact tests and Kruskal-Wallis tests. Phylogenetic specificity was explored by collating the overall lungworm species prevalence values in hosts from previous surveys in various localities. To explore the relative importance of vertical and horizontal transmission, Spearman’s rank correlation was used to look for an association between host size and lungworm burden. A Mantel test was used to explore the association between lungworm species similarity and prey overlap using dietary data.
Results
Halocercus delphini had higher infection levels in striped dolphins and common dolphins; Stenurus ovatus had higher infection levels in bottlenose dolphins; and Stenurus globicephalae had higher infection levels in long-finned pilot whales. These results are congruent with findings on a global scale. Morphometric comparison showed that the larger nematodes were found in the same host species that had the highest parasite burden. Lungworms were found in neonatal striped dolphins and a Risso’s dolphin, and there was a weak but significant correlation between host size and parasite burden in striped dolphins and bottlenose dolphins. There was also a weak but significant association between prey overlap and lungworm species similarity.
Conclusions
Data indicate that phylogenetic specificity has an important role in governing host–parasite associations, as indicated by the higher infection levels and larger nematode size in certain hosts. However, diet can also influence infection patterns in these preferred hosts and contribute to less severe infections in other hosts.
Graphical Abstract
Funder
Ministerio de Economía y Competitividad
Generalitat Valenciana
Conselleria d'Educació, Investigació, Cultura i Esport
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference70 articles.
1. Measures LN. Lungworms of marine mammals. In: Samuel W, Pybus M, Kocan A, editors. Parasitic diseases of wild mammals. 2nd ed. Ames, Iowa: Iowa State Press; 2001. p. 279–300.
2. Fraija-Fernández N, Fernández M, Raga JA, Aznar FJ. Helminth diversity of cetaceans: an update. In: Kovacs A, Nagy P, editors. Advances in marine biology. New York: Nova Science Publishers, Inc; 2016. p. 29–100.
3. Anderson RC. Nematode parasites of vertebrates: their development and transmission. 2nd ed. Wallingford: CABI Publishing; 2000.
4. Lehnert K, Samson-Himmelstjerna G, Schaudien D, Bleidorn C, Wohlsein P, Siebert U. Transmission of lungworms of harbour porpoises and harbour seals: molecular tools determine potential vertebrate intermediate hosts. Int J Parasitol. 2010;40:845–53.
5. Fauquier DA, Kinsel MJ, Dailey MD, Sutton GE, Stolen MK, Wells RS, Gulland FMD. Prevalence and pathology of lungworm infection in bottlenose dolphins Tursiops truncatus from southwest Florida. Dis Aquat Org. 2009;88:85–90.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献