Author:
Hodžić Adnan,Alić Amer,Spahić Amir,Harl Josef,Beck Relja
Abstract
Abstract
Background
Cystic echinococcosis (CE) is recognized as one of the most prevalent zoonotic diseases in Bosnia and Herzegovina. However, no systemic investigation of the genetic diversity of Echinococcus granulosus sensu lato circulating among animals and humans in the country has been performed to date.
Methods
In this preliminary study, we analysed one cyst each from 36 sheep, 27 cattle, 27 pigs, 11 wild boars and 16 human patients for amplification and partial sequencing of the adenosine triphosphate 6 (atp6) and cytochrome c oxidase 1 (cox1) genes. The host species, fertility rate and organ cyst location were recorded for each subject involved in the study.
Results
Overall, the atp6 gene was successfully amplified and sequenced from 110 samples, while 96 of the PCRs for cox1 were positive. Three zoonotic genotypes of E. granulosus sensu stricto (G1 and G3) and Echinococcus canadensis (G7) were identified in our isolates based on analyses of the atp6 gene. These genotypes were represented by 11 different genetic variants (haplotypes), six of which were identified for the first time in the present study.
Conclusions
This study demonstrates, for the first time, that CE in Bosnia and Herzegovina is predominantly caused by E. granulosus sensu stricto and E. canadensis clusters, which exhibited a lower genetic diversity compared to isolates from other European countries. Further molecular studies employing other mitochondrial and nuclear genes are required to better understand the transmission cycles of E. granulosus sensu stricto among intermediate and definitive hosts in the country.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference43 articles.
1. Tamarozzi F, Legnardi M, Fittipaldo A, Drigo M, Cassini R. Epidemiological distribution of Echinococcus granulosus s.l. infection in human and domestic animal hosts in European Mediterranean and Balkan countries: a systematic review. PLoS Negl Trop Dis. 2020;14:e0008519.
2. Casulli A, Massolo A, Saarma U, Umhang G, Santolamazza F, Santoro A. Species and genotypes belonging to Echinococcus granulosus sensu lato complex causing human cystic Echinococcosis in Europe (2000–2021): a systematic review. Parasit Vectors. 2022;15:109.
3. Food and Agriculture Organization of the United Nations (FAO)/WHO. Multicriteria-based ranking for risk management of food-borne parasites: report of a joint FAO/WHO expert meeting, FAO Headquarters, Rome, Italy, 3–7 September 2012. 2014. https://apps.who.int/iris/bitstream/handle/10665/112672/9789241564700_eng.pdf?sequence=1. Accessed 12 Sep 2022.
4. Thompson RC, McManus DP. Towards a taxonomic revision of the genus Echinococcus. Trends Parasitol. 2002;18:452–7.
5. Nakao M, McManus DP, Schantz PM, Craig PS, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology. 2007;134:713–22.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Echinococcus species in wildlife;International Journal for Parasitology: Parasites and Wildlife;2024-04