Abstract
Abstract
Background
Malaria remains one of the most devastating diseases globally, and the control of mosquitoes as the vector is mainly dependent on chemical insecticides. Elevated temperatures associated with future warmer climates could affect mosquitoes' metabolic enzyme expression and increase insecticide resistance, making vector control difficult. Understanding how mosquito rearing temperatures influence their susceptibility to insecticide and expression of metabolic enzymes could aid in the development of novel tools and strategies to control mosquitoes in a future warmer climate. This study evaluated the effects of temperature on the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to pyrethroids and their expression of metabolic enzymes.
Methods
Anopheles gambiae s.l. eggs obtained from laboratory-established colonies were reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38, and 40 °C). Upon adult emergence, 3- to 5-day-old female non-blood-fed mosquitoes were used for susceptibility tests following the World Health Organization (WHO) bioassay protocol. Batches of 20–25 mosquitoes from each temperature regime (25–34 °C) were exposed to two pyrethroid insecticides (0.75% permethrin and 0.05% deltamethrin). In addition, the levels of four metabolic enzymes (α-esterase, β-esterase, glutathione S-transferase [GST], and mixed-function oxidase [MFO]) were examined in mosquitoes that were not exposed and those that were exposed to pyrethroids.
Results
Mortality in An. gambiae s.l. mosquitoes exposed to deltamethrin and permethrin decreased at temperatures above 28 °C. In addition, mosquitoes reared at higher temperatures were more resistant and had more elevated enzyme levels than those raised at low temperatures. Overall, mosquitoes that survived after being exposed to pyrethroids had higher levels of metabolic enzymes than those that were not exposed to pyrethroids.
Conclusions
This study provides evidence that elevated temperatures decreased An. gambiae s.l. mosquitoes' susceptibility to pyrethroids and increased the expression of metabolic enzymes. This evidence suggests that elevated temperatures projected in a future warmer climate could increase mosquitoes' resistance to insecticides and complicate malaria vector control measures. This study therefore provides vital information, and suggests useful areas of future research, on the effects of temperature variability on mosquitoes that could guide vector control measures in a future warmer climate.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference57 articles.
1. Sternberg ED, Waite JL, Thomas MB. Evaluating the efficacy of biological and conventional insecticides with the new ‘MCD bottle’ bioassay. Malar J. 2014;13:499.
2. Alemayehu E, Asale A, Eba K, Getahun K, Tushune K, Bryon A, et al. Mapping insecticide resistance and characterization of resistance mechanisms in Anopheles arabiensis (Diptera: Culicidae) in Ethiopia. Parasites Vectors. 2017;10:407.
3. Karunaratne S, De Silva W, Weeraratne TC, Surendran SN. Insecticide resistance in mosquitoes: development, mechanisms and monitoring. Ceylon J Sci. 2018;47:299–309.
4. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. World Health Organization, Geneva, Switzerland, 2nd ed. 2016. https://apps.who.int/iris/handle/10665/250677. Accessed 26 Aug 2019.
5. Akogbéto MC, Salako AS, Dagnon F, Aikpon R, Kouletio M, Sovi A, et al. Blood feeding behaviour comparison and contribution of Anopheles coluzzii and Anopheles gambiae, two sibling species living in sympatry, to malaria transmission in Alibori and Donga region, northern Benin, West Africa. Malar J. 2018;17:307.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献