Author:
Schares Gereon,Bärwald Andrea,Vernet Marie-Astrid,Bernard Frédéric,Blanchard Béatrice,Coppe Philippe
Abstract
Abstract
Background
Several reports suggest a further spread of besnoitiosis to countries in which Besnoitia besnoiti-infected bovine herds have not been noticed yet. Cattle infected without clinical signs may represent reservoirs. Serological analyses in affected herds or animals from endemic regions are necessary to identify subclinical or inapparent infections and stop transmission to naïve animals or herds. The Monoscreen AbELISA Besnoitia besnoiti (BIO K 466) is based on a previously published in-house competitive ELISA, the Bb-cELISA1, but has a different test architecture. The present study aimed to use sera from a previous evaluation of Bb-cELISA1 to assess whether BIO K466 shows identical results. In addition, further well-characterized positive and negative samples were analysed to estimate diagnostic sensitivity and specificity.
Methods
A first set of sera consisted of a total of 305 bovine sera, collected from German herds infected by B. besnoiti, Neospora caninum or Sarcocystis spp. Sera had been characterized by reference serological tests (i.e. immunoblot, immunofluorescence antibody test and an in-house indirect ELISA). A second set consisted of 200 confirmed B. besnoiti-positive sera from French herds. Negative cattle sera (n = 624) originated from Norway and The Netherlands, countries in which bovine besnoitiosis has not been reported yet.
Results
Using the first set of sera, the BIO K466 showed an estimated diagnostic sensitivity of 97.9% (95% CI: 91.9%–99.6) and a diagnostic specificity of 99.5% (95% CI: 96.9%–100%) relative to reference serological tests. A direct comparison of the results revealed an almost perfect agreement between the results of the in-house Bb-cELISA1 and the commercialized version (kappa 0.98; 95% CI: 0.95–1). The validation using positive bovine sera from France and negative sera from other European countries revealed a diagnostic sensitivity of 97.5% (95% CI: 93.9%–99.1%) and specificity of 99.5% (95% CI: 98.5%–99.9%).
Conclusion
In conclusion, BIO K 466 appears to be a suitable tool to diagnose bovine besnoitiosis, but needs further validation especially in cases of inconclusive, suspected false-positive or -negative results in other serological tests.
Graphic abstract
Funder
Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference15 articles.
1. Alvarez-Garcia G, Frey CF, Mora LM, Schares G. A century of bovine besnoitiosis: an unknown disease re-emerging in Europe. Trends Parasitol. 2013;29:407–15.
2. Gutierrez-Exposito D, Ferre I, Ortega-Mora LM, Alvarez-Garcia G. Advances in the diagnosis of bovine besnoitiosis: current options and applications for control. Int J Parasitol. 2017;47:737–51.
3. Delooz L, Evrard J, Mpouam SE, Saegerman C. Emergence of Besnoitia besnoiti in Belgium. Pathogens. 2021;10:1.
4. Basso W, Schares G, Gollnick NS, Rutten M, Deplazes P. Exploring the life cycle of Besnoitia besnoiti - experimental infection of putative definitive and intermediate host species. Vet Parasitol. 2011;178:223–34.
5. Sharif S, Jacquiet P, Prevot F, Grisez C, Bouhsira E, Franc M, et al. Assessment of persistence of Besnoitia besnoiti (Henry, 1913) bradyzoites in Stomoxys calcitrans (Diptera: Muscidae). Rev Med Vet-Toulouse. 2017;168:197–203.