Abstract
Abstract
Background
The systematic of several marine diphyllobothriid tapeworms of pinnipeds has been revised in recent years. However, 20 species of Diphyllobothrium from phocids and otariids are still recognized as incertae sedis. We describe a new species of Diphyllobothrium from the intestine of California sea lions Zalophus californianus (Lesson) (type-host) and South American sea lions Otaria flavescens (Shaw).
Methods
Zalophus californianus from the Pacific coast of the USA and O. flavescens from Peru and Argentina were screened for parasites. Partial fragments of the large ribosomal subunit gene (lsrDNA) and the cytochrome c oxidase subunit 1 (cox1) mitochondrial gene were amplified for 22 isolates. Properly fixed material from California sea lions was examined using light and scanning electron microscopy.
Results
A total of four lsrDNA and 21 cox1 sequences were generated and aligned with published sequences of other diphyllobothriid taxa. Based on cox1 sequences, four diphyllobothriid tapeworms from O. flavescens in Peru were found to be conspecific with Adenocephalus pacificus Nybelin, 1931. The other newly generated sequences fall into a well-supported clade with sequences of a putative new species previously identified as Diphyllobothrium sp. 1. from Z. californianus and O. flavescens. A new species, Diphyllobothrium sprakeri n. sp., is proposed for tapeworms of this clade.
Conclusions
Diphyllobothrium sprakeri n. sp. is the first diphyllobothriid species described from Z. californianus from the Pacific coast of North America, but O. flavescens from Argentina, Chile and Peru was confirmed as an additional host. The present study molecularly confirmed the first coinfection of two diphyllobothriid species in sea lions from the Southern Hemisphere.
Graphical Abstract
Funder
Parazitologický ústav, Akademie Věd České Republiky
Consejo Nacional de Ciencia y Tecnología
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference53 articles.
1. Caira JN, Jensen K. Planetary biodiversity inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence: University of Kansas, Natural History Museum, Special Publication No. 25; 2017.
2. Hernández-Orts JS, Scholz T, Brabec J, Kuzmina T, Kuchta R. High morphological plasticity and global geographical distribution of the Pacific broad tapeworm Adenocephalus pacificus (syn. Diphyllobothrium pacificum): molecular and morphological survey. Acta Trop. 2015;149:168–78.
3. Kuchta R, Scholz T. Diphyllobothriidea. In: Caira JN, Jensen K, editors. Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. Lawrence: University of Kansas, Natural History Museum, Special Publication No. 25; 2017. p. 167–89.
4. Waeschenbach A, Brabec J, Scholz T, Littlewood DTJ, Kuchta R. The catholic taste of broad tapeworms—multiple routes to human infection. Int J Parasitol. 2017;47:831–43.
5. Hernández-Orts JS, Scholz T, Brabec J, Kuzmina T, Kuchta R. Does the number of genital organs matter? Case of the seal tapeworm Diphyllobothrium (syn. Diplogonoporus) tetrapterum (Cestoda: Diphyllobothriidea). Can J Zool. 2018;96:193–204.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献