Toxoplasma gondii modulates the host cell cycle, chromosome segregation, and cytokinesis irrespective of cell type or species origin

Author:

Rojas-Baron Lisbeth,Senk Kira,Hermosilla Carlos,Taubert Anja,Velásquez Zahady D.

Abstract

Abstract Background Toxoplasma gondii is an apicomplexan intracellular obligate parasite and the etiological agent of toxoplasmosis in humans, domestic animals and wildlife, causing miscarriages and negatively impacting offspring. During its intracellular development, it relies on nutrients from the host cell, controlling several pathways and the cytoskeleton. T. gondii has been proven to control the host cell cycle, mitosis and cytokinesis, depending on the time of infection and the origin of the host cell. However, no data from parallel infection studies have been collected. Given that T. gondii can infect virtually any nucleated cell, including those of humans and animals, understanding the mechanism by which it infects or develops inside the host cell is essential for disease prevention. Therefore, we aimed here to reveal whether this modulation is dependent on a specific cell type or host cell species. Methods We used only primary cells from humans and bovines at a maximum of four passages to ensure that all cells were counted with appropriate cell cycle checkpoint control. The cell cycle progression was analysed using fluorescence-activated cell sorting (FACS)-based DNA quantification, and its regulation was followed by the quantification of cyclin B1 (mitosis checkpoint protein). The results demonstrated that all studied host cells except bovine colonic epithelial cells (BCEC) were arrested in the S-phase, and none of them were affected in cyclin B1 expression. Additionally, we used an immunofluorescence assay to track mitosis and cytokinesis in uninfected and T. gondii-infected cells. Results The results demonstrated that all studied host cell except bovine colonic epithelial cells (BCEC) were arrested in the S-phase, and none of them were affected in cyclin B1 expression. Our findings showed that the analysed cells developed chromosome segregation problems and failed to complete cytokinesis. Also, the number of centrosomes per mitotic pole was increased after infection in all cell types. Therefore, our data suggest that T. gondii modulates the host cell cycle, chromosome segregation and cytokinesis during infection or development regardless of the host cell origin or type. Graphical Abstract

Funder

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3