Tick microbial associations at the crossroad of horizontal and vertical transmission pathways

Author:

Krawczyk Aleksandra Iwona,Röttjers Sam,Coimbra-Dores Maria João,Heylen Dieter,Fonville Manoj,Takken Willem,Faust Karoline,Sprong Hein

Abstract

Abstract Background Microbial communities can affect disease risk by interfering with the transmission or maintenance of pathogens in blood-feeding arthropods. Here, we investigated whether bacterial communities vary between Ixodes ricinus nymphs which were or were not infected with horizontally transmitted human pathogens. Methods Ticks from eight forest sites were tested for the presence of Borrelia burgdorferi sensu lato, Babesia spp., Anaplasma phagocytophilum, and Neoehrlichia mikurensis by quantitative polymerase chain reaction (qPCR), and their microbiomes were determined by 16S rRNA amplicon sequencing. Tick bacterial communities clustered poorly by pathogen infection status but better by geography. As a second approach, we analysed variation in tick microorganism community structure (in terms of species co-infection) across space using hierarchical modelling of species communities. For that, we analysed almost 14,000 nymphs, which were tested for the presence of horizontally transmitted pathogens B. burgdorferi s.l., A. phagocytophilum, and N. mikurensis, and the vertically transmitted tick symbionts Rickettsia helvetica, Rickettsiella spp., Spiroplasma ixodetis, and CandidatusMidichloria mitochondrii. Results With the exception of Rickettsiella spp., all microorganisms had either significant negative (R. helvetica and A. phagocytophilum) or positive (S. ixodetis, N. mikurensis, and B. burgdorferi s.l.) associations with M. mitochondrii. Two tick symbionts, R. helvetica and S. ixodetis, were negatively associated with each other. As expected, both B. burgdorferi s.l. and N. mikurensis had a significant positive association with each other and a negative association with A. phagocytophilum. Although these few specific associations do not appear to have a large effect on the entire microbiome composition, they can still be relevant for tick-borne pathogen dynamics. Conclusions Based on our results, we propose that M. mitochondrii alters the propensity of ticks to acquire or maintain horizontally acquired pathogens. The underlying mechanisms for some of these remarkable interactions are discussed herein and merit further investigation. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3