Identification of anti-horn fly vaccine antigen candidates using a reverse vaccinology approach

Author:

Domingues Luísa N.,Bendele Kylie G.ORCID,Halos Lénaïg,Moreno Yovany,Epe Christian,Figueiredo Monica,Liebstein Martin,Guerrero Felix D.

Abstract

Abstract Background The horn fly, Haematobia irritans irritans, causes significant production losses to the cattle industry. Horn fly control relies on insecticides; however, alternative control methods such as vaccines are needed due to the fly's capacity to quickly develop resistance to insecticides, and the pressure for eco-friendly options. Methods We used a reverse vaccinology approach comprising three vaccine prediction and 11 annotation tools to evaluate and rank 79,542 translated open reading frames (ORFs) from the horn fly's transcriptome, and selected 10 transcript ORFs as vaccine candidates for expression in Pichia pastoris. The expression of the 10 selected transcripts and the proteins that they encoded were investigated in adult flies by reverse transcription polymerase chain reaction (RT-PCR) and mass spectrometry, respectively. Then, we evaluated the immunogenicity of a vaccine candidate in an immunization trial and the antigen’s effects on horn fly mortality and fecundity in an in vitro feeding assay. Results Six of the ten vaccine candidate antigens were successfully expressed in P. pastoris. RT-PCR confirmed the expression of all six ORFs in adult fly RNA. One of the vaccine candidate antigens, BI-HS009, was expressed in sufficient quantity for immunogenicity and efficacy trials. The IgG titers of animals vaccinated with BI-HS009 plus adjuvant were significantly higher than those of animals vaccinated with buffer plus adjuvant only from days 42 to 112, with a peak on day 56. Progeny of horn flies feeding upon blood from animals vaccinated with BI-HS009 plus adjuvant collected on day 56 had 63% lower pupariation rate and 57% lower adult emergence than the control group (ANOVA: F(1, 6) = 8.221, P = 0.028 and F(1, 6) = 8.299, P = 0.028, respectively). Conclusions The reverse vaccinology approach streamlined the discovery process by prioritizing possible vaccine antigen candidates. Through a thoughtful process of selection and in vivo and in vitro evaluations, we were able to identify a promising antigen for an anti-horn fly vaccine. Graphical abstract

Funder

Boehringer Ingelheim

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference71 articles.

1. Oyarzún MP, Quiroz A, Birkett MA. Insecticide resistance in the horn fly: alternative control strategies. Med Vet Entomol. 2008;22(3):188–202.

2. CPI Inflation Calculator. Bureau of labor statistics. https://www.bls.gov/data/inflation_calculator.htm. Accessed 20 July 2021.

3. Kunz SE, Murrel KD, Lambert G, James LF, Terrill CE. Estimated losses of livestock to pests. In: Pimental D, editor. CRC handbook of pest management in agriculture. Boca Raton: CRC Press; 1991. p. 69–98.

4. Grisi L, Leite RC, de Martins JRS, de Barros ATM, Andreotti R, Cançado PHD, et al. Reavaliação do potencial impacto econômico de parasitos de bovinos no Brasil. Rev Bras Parasitol Vet. 2014;23(2):150–6.

5. Georghiou GP. Principles of insecticide resistance management. Phytoprotection. 1994;754:51–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3