Author:
Bang Woo Jun,Won Min Hyeok,Cho Seong Tae,Ryu Jihun,Choi Kwang Shik
Abstract
Abstract
Background
Mosquitoes, as vectors of various human pathogens, are significant drivers of serious human illness. In particular, those species in the Aedini tribe, which typically transmit dengue virus, Chikungunya fever virus, and Zika virus, are increasing their range because of climate change and international commerce. In order to evaluate the risk of disease transmission, accurate mosquito species identification and monitoring are needed. The goal of this work was to develop a rapid and simple molecular diagnostic method for six morphologically similar Aedini species (Aedes flavopictus, Aedes albopictus, Ochlerotatus koreicus, Ochlerotatus japonicus, Ochlerotatus togoi and Ochlerotatus hatorii) in Korea.
Methods
A total of 109 samples were assayed in this study. The internal transcribed spacer 2 (ITS2) regions from all six species were amplified, sequenced and analyzed using Mega 6. Following the identification of regions that were consistently different in terms of sequence between all six species, multiplex primers were designed to amplify these regions to generate species-specific fragments distinguishable by their size.
Results
Uniquely sized fragments were generated in Ae. flavopictus (495 bp), Ae. albopictus (438 bp), Oc. koreicus (361 bp), Oc. togoi (283 bp), Oc. hatorii (220 bp) and Oc. japonicus (160 bp). Pairwise distance analysis showed that the difference was 35.0 ± 1.5% between Aedes spp. and Ochlerotatus spp., 17.4 ± 0.2% between Ae. albopictus and Ae. flavopictus and 11.1 ± 0.3% between Oc. koreicus and Oc. japonicus.
Conclusions
In this study, a multiplex PCR assay for six species of the Aedini tribe was developed. This assay is more accurate than morphological identification and will be useful for monitoring and controlling these vector mosquitoes.
Graphical Abstract
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference52 articles.
1. Reiter P. Climate change and mosquito-borne disease. Environ Int. 2001;109:141–61.
2. Tatem AJ, Huang Z, Das A, Qi Q, Roth J, Qiu Y. Air travel and vector-borne disease movement. Parasitology. 2012;139:1816–30.
3. World Health Organization (WHO). Vector-borne diseases. Geneva: WHO. 2020. https://www.who.int/en/news-room/fact-sheets/detail/vector-borne-diseases. Accessed 7 Dec 2020.
4. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.
5. Attaway DF, Waters NM, Geraghty EM, Jacobsen KH. Zika virus: Endemic and epidemic ranges of Aedes mosquito transmission. J Infect Public Health. 2017;10:120–3.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献