Baseline gut microbiota diversity and composition and albendazole efficacy in hookworm-infected individuals

Author:

Gandasegui Javier,Fleitas Pedro E.,Petrone Paula,Grau-Pujol Berta,Novela Valdemiro,Rubio Elisa,Muchisse Osvaldo,Cossa Anélsio,Jamine José Carlos,Sacoor Charfudin,Brienen Eric A. T.,van Lieshout Lisette,Muñoz José,Casals-Pascual Climent

Abstract

AbstractSoil-transmitted helminth (STH) infections account for a significant global health burden, necessitating mass drug administration with benzimidazole-class anthelmintics, such as albendazole (ALB), for morbidity control. However, ALB efficacy shows substantial variability, presenting challenges for achieving consistent treatment outcomes. We have explored the potential impact of the baseline gut microbiota on ALB efficacy in hookworm-infected individuals through microbiota profiling and machine learning (ML) techniques. Our investigation included 89 stool samples collected from hookworm-infected individuals that were analyzed by microscopy and quantitative PCR (qPCR). Of these, 44 were negative by microscopy for STH infection using the Kato-Katz method and qPCR 21 days after treatment, which entails a cure rate of 49.4%. Microbiota characterization was based on amplicon sequencing of the V3–V4 16S ribosomal RNA gene region. Alpha and beta diversity analyses revealed no significant differences between participants who were cured and those who were not cured, suggesting that baseline microbiota diversity does not influence ALB treatment outcomes. Furthermore, differential abundance analysis at the phylum, family and genus levels yielded no statistically significant associations between bacterial communities and ALB efficacy. Utilizing supervised ML models failed to predict treatment response accurately. Our investigation did not provide conclusive insights into the relationship between gut microbiota and ALB efficacy. However, the results highlight the need for future research to incorporate longitudinal studies that monitor changes in the gut microbiota related to the infection and the cure with ALB, as well as functional metagenomics to better understand the interaction of the microbiome with the drug, and its role, if there is any, in modulating anthelmintic treatment outcomes in STH infections. Interdisciplinary approaches integrating microbiology, pharmacology, genetics and data science will be pivotal in advancing our understanding of STH infections and optimizing treatment strategies globally. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3