Echinococcus spp. and genotypes infecting humans in Tibet Autonomous Region of China: a molecular investigation with near-complete/complete mitochondrial sequences

Author:

Zhao YanpingORCID,Gesang Dunzhu,Wan Li,Li Jiandong,Qiangba Gezhen,Danzeng Wangmu,Basang Zhuoga,Renzhen Nibu,Yin Jiefang,Gongsang Quzhen,Cai Huimin,Pang Huasheng,Wang Daxi,Asan ,Zhang Qingda,Li Junhua,Chen Weijun

Abstract

Abstract Background Molecular markers are essential to identify Echinococcus species and genotypes in areas with multiple Echinococcus species to understand their epidemiology and pathology. Tibet Autonomous Region (TAR) is one of the areas worst hit by echinococcosis. However, molecular epidemiology is still missing among echinococcosis patients in TAR. This research explored the Echinococcus species and genotypes infecting humans in TAR and the population diversity and the possible origin of G1 in TAR. Methods Cyst samples were collected in one echinococcosis-designated hospital in TAR. Echinococcus species and genotypes were identified through a maximum-likelihood approach with near-complete/complete mtDNA using IQ-TREE. Phylogenetic networks were built with PopART, and the phylogeographical diffusion pattern was identified using a Bayesian discrete phylogeographic method. Results Using phylogenetic trees made with near-complete/complete mtDNA obtained from 92 cysts from TAR patients, the Echinococcus species and genotypes infecting humans in TAR were identified as Echinococcus granulosus (s.s.) G1 (81, 88.04%), accounting for the majority, followed by G6 of the E. canadensis cluster (6, 6.52%), E. granulosus (s.s.) G3 (3, 3.26%), and E. multilocularis (2, 2.17%). An expansion trend and a possible recent bottleneck event were confirmed among the G1 samples in TAR. Adding the other near-complete mtDNA of G1 samples globally from the literature, we identified the possible phylogeographic origin of the G1 samples in TAR as Turkey. Conclusions Using near-complete/complete mtDNA sequences of Echinococcus spp. obtained from echinococcosis patients, a variety of Echinococcus species and genotypes infecting humans throughout TAR were identified. As far as we know, this is the first comprehensive molecular investigation of Echinococcus species and genotypes infecting humans throughout TAR. We identified, for the first time to our knowledge, the possible origin of the G1 in TAR. We also enriched the long mtDNA database of Echinococcus spp. and added two complete E. multilocularis mtDNA sequences from human patients. These findings will improve our knowledge of echinococcosis, help to refine the targeted echinococcosis control measures, and serve as a valuable baseline for monitoring the Echinococcus species and genotypes mutations and trends of the Echinococcus spp. population in TAR. Graphical Abstract

Funder

NHC Key Laboratory of Echinococcosis Prevention and Control

The Science & Technology Department of Sichuan Province Funding Project

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference70 articles.

1. World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases: a roadmap for implementation: executive summary. Geneva: World Health Organization; 2012.

2. McManus DP, Gray DJ, Zhang W, Yang Y. Diagnosis, treatment, and management of echinococcosis. BMJ. 2012;344: e3866. https://doi.org/10.1136/bmj.e3866.

3. Food and Agriculture Organization of the United Nations/World Health Organization. Multicriteria-based ranking for risk management of food-borne parasites. Microbiological Risk Assessment Series No. 23. Rome: FAO/WHO; 2014.

4. Ito A, Nakao M, Lavikainen A, Hoberg E. Cystic echinococcosis: future perspectives of molecular epidemiology. Acta Trop. 2017;165:3–9. https://doi.org/10.1016/j.actatropica.2016.05.013.

5. Alvarez Rojas CA, Romig T, Lightowlers MW. Echinococcus granulosus sensu lato genotypes infecting humans—review of current knowledge. Int J Parasitol. 2014;44:9–18. https://doi.org/10.1016/j.ijpara.2013.08.008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3