Abstract
Abstract
Background
There are more than 300 species of capillariids that parasitize various vertebrate groups worldwide. Species identification is hindered because of the few taxonomically informative structures available, making the task laborious and genus definition controversial. Thus, its taxonomy is one of the most complex among Nematoda. Eggs are the parasitic structures most viewed in coprological analysis in both modern and ancient samples; consequently, their presence is indicative of positive diagnosis for infection. The structure of the egg could play a role in genera or species discrimination. Institutional biological collections are taxonomic repositories of specimens described and strictly identified by systematics specialists.
Methods
The present work aims to characterize eggs of capillariid species deposited in institutional helminth collections and to process the morphological, morphometric and ecological data using machine learning (ML) as a new approach for taxonomic identification. Specimens of 28 species and 8 genera deposited at Coleção Helmintológica do Instituto Oswaldo Cruz (CHIOC, IOC/FIOCRUZ/Brazil) and Collection de Nématodes Zooparasites du Muséum National d’Histoire Naturelle de Paris (MNHN/France) were examined under light microscopy. In the morphological and morphometric analyses (MM), the total length and width of eggs as well as plugs and shell thickness were considered. In addition, eggshell ornamentations and ecological parameters of the geographical location (GL) and host (H) were included.
Results
The performance of the logistic model tree (LMT) algorithm showed the highest values in all metrics compared with the other algorithms. Algorithm J48 produced the most reliable decision tree for species identification alongside REPTree. The Majority Voting algorithm showed high metric values, but the combined classifiers did not attenuate the errors revealed in each algorithm alone. The statistical evaluation of the dataset indicated a significant difference between trees, with GL + H + MM and MM only with the best scores.
Conclusions
The present research proposed a novel procedure for taxonomic species identification, integrating data from centenary biological collections and the logic of artificial intelligence techniques. This study will support future research on taxonomic identification and diagnosis of both modern and archaeological capillariids.
Graphical abstract
Funder
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação Coordenação de Projetos, Pesquisas e Estudos Tecnológicos
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference29 articles.
1. Moravec F. Proposal of a new systematic arrangement of nematodes of the family Capillariidae. Folia Parasitol (Praha). 1982;29:119–32.
2. Moravec F, Prokopic J, Shlikas A. The biology of nematodes of the family Capillariidae Neveu-Lemaire, 1936. Folia Parasitol (Praha). 1987;34:39–56.
3. Gibbons LM. Keys to the nematode parasites of vertebrates: supplementary volume. Wallingford: CAB International; 2010.
4. Tamaru M, Yamaki S, Jimenez LA, Sato H. Morphological and molecular genetic characterization of three Capillaria spp. (Capillaria anatis, Capillaria pudendotecta, and Capillaria madseni) and Baruscapillaria obsignata (Nematoda: Trichuridae: Capillariinae) in avians. Parasitol Res. 2015;114:4011–22.
5. Guardone L, Deplazes P, Macchioni F, Magi M, Mathis A. Ribosomal and mitochondrial DNA analysis of Trichuridae nematodes of carnivores and small mammals. Vet Parasitol. 2013;197:364–9.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献