Echinococcus granulosus cyst fluid inhibits KDM6B-mediated demethylation of trimethylated histone H3 lysine 27 and interleukin-1β production in macrophages

Author:

Lin Ruolin,Wang Xiaopeng,Ni Caiya,Fu Chunxue,Yang Chun,Dong Dan,Wu Xiangwei,Chen Xueling,Wang Lianghai,Hou Jun

Abstract

Abstract Background Echinococcus granulosus can manipulate its host's immune response to ensure its own survival. However, the effect of histone modifications on the regulation of the NOD-like receptor protein 3 (NLRP3) inflammasome and downstream interleukin-1β (IL-1β) production in response to the parasite is not fully understood. Methods We evaluated IL-1β secretion through enzyme-linked immunosorbent assay and assessed reactive oxygen species levels using the dichlorodihydrofluorescein diacetate probe. Western blotting and quantitative real-time polymerase chain reaction were performed to examine the expression of NLRP3 and IL-1β in mouse peritoneal macrophages and Tohoku Hospital Pediatrics-1 cells, a human macrophage cell line. The presence of trimethylated histone H3 lysine 27 (H3K27me3) modification on NLRP3 and IL-1β promoters was studied by chromatin immunoprecipitation. Results Treatment with E. granulosus cyst fluid (EgCF) considerably reduced IL-1β secretion in mouse and human macrophages, although reactive oxygen species production increased. EgCF also suppressed the expression of NLRP3 and IL-1β. Mechanistically, EgCF prompted the enrichment of repressive H3K27me3 modification on the promoters of both NLRP3 and IL-1β in macrophages. Notably, the presence of EgCF led to a significant reduction in the expression of the H3K27me3 demethylase KDM6B. Conclusions Our study revealed that EgCF inhibits KDM6B expression and H3K27me3 demethylation, resulting in the transcriptional inhibition of NLRP3 and IL-1β. These results provide new insights into the immune evasion mechanisms of E. granulosus. Graphical Abstract

Funder

National Natural Science Foundation of China

Bingtuan Science and Technology Program

Science and Technology Program of Shihezi University

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology,General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3