Author:
Wang Peng-peng,Jiang Xuefeng,Bai Jie,Yang Fan,Yu Xinxin,Wu Yudi,Zheng Wenqi,Zhang Yongzhe,Cui Liwang,Liu Fei,Zhu Xiaotong,Cao Yaming
Abstract
Abstract
Background
The Plasmodium zygote-to-ookinete developmental transition is an essential step for establishing an infection in the mosquito vector, and antigens expressed during this stage are potential targets for transmission-blocking vaccines (TBVs). The secreted ookinete protein 26 (PSOP26) is a newly identified ookinete surface protein. The anti-PSOP26 serum has moderate transmission-blocking activity, indicating the benefit of further investigating this protein as a target for TBVs.
Methods
The function of psop26 was analyzed by targeted gene disruption. A chimeric PSOP25-PSOP26 protein was expressed in the Escherichia coli system. The PSOP25-PSOP26 fusion protein, along with mixed (PSOP25 + PSOP26) or single proteins (PSOP26 or PSOP25), were used for the immunization of mice. The antibody titers and immunogenicity of individual sera were analyzed by enzyme-linked immunoassay (ELISA), indirect immunofluorescence assay (IFA), and Western blot. The transmission-blocking activity of sera from different immunization schemes was assessed using in vitro and in vivo assays.
Results
PSOP26 is a surface protein expressed in Plasmodium gametes and ookinetes. The protein is dispensable for asexual blood-stage development, gametogenesis, and zygote formation, but is essential for the zygote-to-ookinete developmental transition. Specifically, both the prevalence of infections and oocyst densities were decreased in mosquitoes fed on psop26-null mutants. Mixtures of individual PSOP25 and PSOP26 fragments (PSOP25 + PSOP26), as well as chimeras (PSOP25-PSOP26), elicited high antibody levels in mice, with no immunological interference. Antisera against the mixed and fusion proteins elicited higher transmission-reducing activity (TRA) than antisera against the single PSOP26 antigen, but comparable to antisera against PSOP25 antigen alone.
Conclusions
PSOP26 plays a critical role in the zygote-to-ookinete developmental transition. PSOP25 is a promising TBV candidate that could be used alone to target the ookinete stage.
Funder
National Institutes of Health grants
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献