Author:
Gonzalez Paula V.,Loureiro Aline C.,Gómez-Bravo Andrea,Castillo Paola,Espinosa Manuel,Gil José F.,Martins Ademir J.,Harburguer Laura V.
Abstract
Abstract
Background
Aedes aegypti (L.) is the main vector of dengue, yellow fever, Zika, and chikungunya viruses in many parts of the world, impacting millions of people worldwide each year. Insecticide-based interventions have been effective in controlling Aedes mosquito populations for several years, but in recent times, resistance to these compounds has developed, posing a global threat to the control of this mosquito.
Methods
Ovitraps were used to collect A. aegypti eggs in the cities of Tartagal and San Ramón de la Nueva Orán (Salta), Puerto Iguazú (Misiones), and Clorinda (Formosa). World Health Organization (WHO)-impregnated papers with the discriminating concentration (DC) of permethrin, 5X, 10X and pirimiphos methyl were used for the toxicological bioassays. We also genotyped each sample for the three kdr single nucleotide polymorphisms (SNP): V410L, V1016I, and F1534C in individual TaqMan quantitative PCR (qPCR) reactions.
Results
All investigated A. aegypti populations were highly resistant to permethrin, as the mortality percentage with the permethrin 10×DC remained below 98%. However, all populations were 100% susceptible to pirimiphos-methyl. Kdr genotyping demonstrated the presence of the V410L mutation for the first time in Argentina in all the populations studied. A prevalence of the triple mutant genotype (LL + II + CC) was observed in the northeastern cities of Clorinda (83.3%) and Puerto Iguazú (55.6%).
Conclusions
This study demonstrates for the first time the presence and intensity of resistance to permethrin in different populations from Argentina, and correlates the observed phenotype with the presence of kdr mutations (genotype).
Graphical Abstract
Funder
Fondo para la Investigación Científica y Tecnológica
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Pilger D, De Maesschalckm M, Horstick O, San Martin JL. Dengue outbreak response: documented effective interventions and evidence gaps. TropIKA.net. 2010; 1:1.
2. WHO [World Health Organization]. Global Insecticide Use for Vector-Borne Disease Control A 10-Year assessment (2000–2009) fifth ed., 2011.
3. Van den Berg H, da Silva Bezerra HS, Al-Eryani S, Chanda E, Nagpal BN, Knox TB, et al. Recent trends in global insecticide use for disease vector control and potential implications for resistance management. Sci Rep. 2021;11:23867.
4. Dusfour I, Zorrilla P, Guidez A, Issaly J, Girod R, Guillaumot L, et al. Deltamethrin resistance mechanisms in Aedes aegypti populations from three French overseas territories worldwide. PLoS Negl Trop Dis. 2015;9:1–17.
5. Goindin D, Delannay C, Gelasse A, Ramdini C, Gaude T, Faucon F, et al. Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infect Dis Poverty. 2017;6:1–15.