Abstract
Abstract
Background
Pulsed ultraviolet (UV)-C light sources, such as excimer lasers, are used in emerging non-thermal food-decontamination methods and also have high potential for use in a wide range of microbial decontamination applications. The acaricidal effect of an experimental UV-C irradiation device was assessed using female adults and eggs of a model organism, the two-spotted spider mite Tetranychus urticae.
Methods
UV-C light was generated by a pulsed krypton fluoride excimer laser operating at 248-nm emission wavelength. The pulse energy and pulse repetition rate were 5 mJ and up to 100 Hz, respectively. The distance from the light source to the target was 150 mm; the target surface area was 2.16 cm2. The exposure time for the mites and fresh eggs varied from 1 to 4 min at 5–300 mW, which corresponded to UV doses of 5–80 kJ/m2. Post-irradiation acaricidal effects (mite mortality) were assessed immediately and also measured at 24 h. The effects of UV-C irradiation on the hatchability of eggs were observed daily for up to 12 days post-irradiation.
Results
The mortality of mites at 5 and 40 kJ/m2 was 26% and 92%, respectively. Mite mortality reached 98% at 80 kJ/m2. The effect of exposure duration on mortality was minimal. The effect of irradiation on egg hatchability was even more significant than that on adult mite mortality, i.e. about 100% egg mortality at an accumulated dose of as little as 5 kJ/m2 for each exposure time.
Conclusions
A high rate of mite mortality and lethal egg damage were observed after less than 1 min of exposure to 5 mJ UV-C pulsed irradiation at 60 Hz. Pending further developments (such as beam steering, beam shaping and miniaturisation) and feasibility studies (such as testing with mites in real-life situations), the reported results and characteristics of the UV-C generator (modulation of energy output and adaptability to varying spot sizes) open up the use of this technology for a vast field of acaricidal applications that require long-range radiation.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference54 articles.
1. Albert T, Braun PG, Saffaf J, Wiacek C. Physical methods for the decontamination of meat surfaces. Curr Clin Microbiol Rep. 2021:1–12.
2. Fan X, Wang W. Quality of fresh and fresh-cut produce impacted by nonthermal physical technologies intended to enhance microbial safety. Crit Rev Food Sci Nutr. 2020. https://doi.org/10.1080/10408398.2020.1816892.
3. Knudson GB, Shoemaker MO, Elliott TB. Inactivation of biological threat agents with nonionizing radiation. Radiat Inact Bioterror Agents. 2005;365:161.
4. Sommers CH, Sheen S. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing. Food Microbiol. 2015;50:1–4.
5. Vatansever F, Ferraresi C, de Sousa MV, Yin R, Rineh A, Sharma SK, et al. Can biowarfare agents be defeated with light? Virulence. 2013;4:796–825.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献