Genetic diversity of Plasmodium vivax reticulocyte binding protein 2b in global parasite populations

Author:

Zhang Xuexing,Wei Haichao,Zhang Yangminghui,Zhao Yan,Wang Lin,Hu Yubing,Nguitragool Wang,Sattabongkot Jetsumon,Adams John,Cui Liwang,Cao Yaming,Wang Qinghui

Abstract

Abstract Background Plasmodium vivax reticulocyte binding protein 2b (PvRBP2b) plays a critical role in parasite invasion of reticulocytes by binding the transferrin receptor 1. PvRBP2b is a vaccine candidate based on the negative correlation between antibody titers against PvRBP2b recombinant proteins and parasitemia and risk of vivax malaria. The aim of this study was to analyze the genetic diversity of the PvRBP2b gene in the global P. vivax populations. Methods Near full-length PvRBP2b nucleotide sequences (190–8349 bp) were obtained from 88 P. vivax isolates collected from the China–Myanmar border (n = 44) and Thailand (n = 44). An additional 224 PvRBP2b sequences were retrieved from genome sequences from parasite populations worldwide. The genetic diversity, neutral selection, haplotype distribution and genetic differentiation of PvRBP2b were examined. Results The genetic diversity of PvRBP2b was distributed unevenly, with peak diversity found in the reticulocyte binding region in the N-terminus. Neutrality analysis suggested that this region is subjected to balancing selection or population bottlenecks. Several amino acid variants were found in all or nearly all P. vivax endemic regions. However, the critical residues responsible for reticulocyte binding were highly conserved. There was substantial population differentiation according to the geographical separation. The distribution of haplotypes in the reticulocyte binding region varied among regions; even the two major haplotypes Hap_6 and Hap_8 were found in only five populations. Conclusions Our data show considerable genetic variations of PvRBPb in global parasite populations. The geographic divergence may pose a challenge to PvRBP2b-based vaccine development. Graphical Abstract

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3