Sheep scab spatial distribution: the roles of transmission pathways

Author:

Nixon Emily JoanneORCID,Brooks-Pollock Ellen,Wall Richard

Abstract

Abstract Background Ovine psoroptic mange (sheep scab) is a highly pathogenic contagious infection caused by the mite Psoroptes ovis. Following 21 years in which scab was eradicated in the UK, it was inadvertently reintroduced in 1972 and, despite the implementation of a range of control methods, its prevalence increased steadily thereafter. Recent reports of resistance to macrocyclic lactone treatments may further exacerbate control problems. A better understanding of the factors that facilitate its transmission are required to allow improved management of this disease. Transmission of infection occurs within and between contiguous sheep farms via infected sheep-to-sheep or sheep–environment contact and through long-distance movements of infected sheep, such as through markets. Methods A stochastic metapopulation model was used to investigate the impact of different transmission routes on the spatial pattern of outbreaks. A range of model scenarios were considered following the initial infection of a cluster of highly connected contiguous farms. Results Scab spreads between clusters of neighbouring contiguous farms after introduction but when long-distance movements are excluded, infection then self-limits spatially at boundaries where farm connectivity is low. Inclusion of long-distance movements is required to generate the national patterns of disease spread observed. Conclusions Preventing the movement of scab infested sheep through sales and markets is essential for any national management programme. If effective movement control can be implemented, regional control in geographic areas where farm densities are high would allow more focussed cost-effective scab management. Graphical Abstract

Funder

Biotechnology and Biological Sciences Research Council

national institute for health research health protection research unit

medical research council

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3