20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors

Author:

Ekoka ElodieORCID,Maharaj Surina,Nardini Luisa,Dahan-Moss Yael,Koekemoer Lizette L.

Abstract

AbstractWith the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors. Graphical abstract

Funder

Medical Faculty Endowment Fund, University of the Witwatersrand

South African National Research Foundation (DST/NRF) Chairs Initiative Grant

Communities of Practice grant

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3