Assessing the acoustic behaviour of Anopheles gambiae (s.l.) dsxF mutants: implications for vector control

Author:

Su Matthew P.,Georgiades Marcos,Bagi Judit,Kyrou Kyros,Crisanti Andrea,Albert Joerg T.

Abstract

Abstract Background Release of gene-drive mutants to suppress Anopheles mosquito reproduction is a promising method of malaria control. However, many scientific, regulatory and ethical questions remain before transgenic mosquitoes can be utilised in the field. At a behavioural level, gene-drive carrying mutants should be at least as sexually attractive as the wildtype populations they compete against, with a key element of Anopheles copulation being acoustic courtship. We analysed sound emissions and acoustic preference in a doublesex mutant previously used to collapse Anopheles gambiae (s.l.) cages. Methods Anopheles rely on flight tones produced by the beating of their wings for acoustic mating communication. We assessed the impact of disrupting a female-specific isoform of the doublesex gene (dsxF) on the wing beat frequency (WBF; measured as flight tone) of males (XY) and females (XX) in homozygous dsxF mutants (dsxF−/−), heterozygous dsxF carriers (dsxF+/−) and G3 dsxF+ controls (dsxF+/+). To exclude non-genetic influences, we controlled for temperature and wing length. We used a phonotaxis assay to test the acoustic preferences of mutant and control mosquitoes. Results A previous study showed an altered phenotype only for dsxF−/− females, who appear intersex, suggesting that the female-specific dsxF allele is haplosufficient. We identified significant, dose-dependent increases in the WBF of both dsxF−/− and dsxF+/− females compared to dsxF+/+ females. All female WBFs remained significantly lower than male equivalents, though. Males showed stronger phonotactic responses to the WBFs of control dsxF+/+ females than to those of dsxF+/− and dsxF−/− females. We found no evidence of phonotaxis in any female genotype. No male genotypes displayed any deviations from controls. Conclusions A prerequisite for anopheline copulation is the phonotactic attraction of males towards female flight tones within mating swarms. Reductions in mutant acoustic attractiveness diminish their mating efficiency and thus the efficacy of population control efforts. Caged population assessments may not successfully reproduce natural mating scenarios. We propose to amend existing testing protocols to better reflect competition between mutants and target populations. Our findings confirm that dsxF disruption has no effect on males; for some phenotypic traits, such as female WBFs, the effects of dsxF appear dose-dependent rather than haplosufficient.

Funder

Biotechnology and Biological Sciences Research Council

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3